CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > Calculus Formulas

Calculus Formulas

Terms : Hide Images [1]
167205412lim (x->0) sinx/x1
167205413lim (x->0) cosx-1/x0
167205414continuity terms1. f(c) exists 2. lim (x->c) f(x) exists 3. lim (x->c) f(x) = f(c)
167205415jump discontinuitycurve "breaks: and starts somewhere else (left limit doesn't equal right limit)
167205416point discontinuitycurve has a "hole" (limit as x approaches a ≠ f at a)
167205417essential discontinuitycurve has a vertical asymptote
167205418removable discontinuityrational expression w/ common factors that cancel out
167205419tangent linetouches curve at exactly one point
167205420derivativelim (h->0) f(x1+h) - f(x1) / h
167205421d/dx sinxcosx
167205422d/dx cosx-sinx
167205423d/dx tanxsec^2x
167205424d/dx cotx-csc^2x
167205425d/dx secxsecxtanx
167205426d/dx cscx-cscxcotx
167205427Area of trapezoid1/2 (b1+b2)(h)
167205428Volume of cylinderπr^2h
167205429surface area of cyclinder2πrh
167205430volume of cone1/3πr^2h
167205431volume of sphere4/3πr^3
167205432surface area of sphere4πr^3
167205433mean value theorem for derivativesf'(c) = f(b)-f(a)/b-a
167205434rolle's theorem1. continuous on [a,b] 2. differentiable on (a,b) 3. f(a) = f(b) = 0 THEN there is one c between a and b that f'(c) = 0
167205435semicircley = root(r^2 - x^2)
167205436positionx(t)
167205437velocityx'(t)
167205438accelerationx''(t)
167205439d/dx lnu1/u du/dx
167205440d/dx e^ue^u du/dx
167205441d/dx logau1/u lna du/dx
167205442d/dx a^ua^u (lna) du/dx
167205443∫du/uln|u|+C
167205444∫tanx-ln|cosx|+C
167205445∫cotxln|sinx|+C
167205446∫secxln|secx+tanx| + C
167205447∫cscx-ln|cscx+cotx|
167205448∫a^u1/lna a^u + C
167205449L'hopital's rulelim (x->c) f(x)/g(x) = f'(x)/g'(x) only for indeterminate functions (equal 0/0 or ∞/∞) so basically solve them separately
167205450trapezoid ruleb-a/2n [f(xo) + 2f(x1) + 2f(x2) ... f(xn)}
167205451simpson's ruleb-a/3n [f(xo) + 4f(x1) + 2f(x2) + 4f(x3) .... f(xn)]
167205452Mean value theorem for integralsf(c) = 1/b-a ∫[a to b] f(x)dx
167205453Second fundamental theoremdF/dx=d/dx ∫[a to x] f(t)dt = f(x)
167205454Volume of diskπ (radius) ^2 (thickness)
167205455Volume of washerπ [(outer r)^2 - (inner r)^2] (thickness)
167205456Volume of shell2π (radius) (altitude) (thickness)
167205457∫udv aka integration by partsuv-∫vdu
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/calculus_formulas#comment-0

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/