AP Calculus Flash Cards Flashcards
AP Calculus AB, calculus terms and theorems
Terms : Hide Images [1]
503752732 | 1 | ||
503752733 | 0 | ||
503752734 | Squeeze Theorem | ||
503752735 | f is continuous at x=c if... | ||
503752736 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | |
503752737 | Global Definition of a Derivative | ||
503752738 | Alternative Definition of a Derivative | f '(x) is the limit of the following difference quotient as x approaches c | |
503752739 | nx^(n-1) | ||
503752740 | 1 | ||
503752741 | cf'(x) | ||
503752742 | f'(x)+g'(x) | ||
503752743 | The position function OR s(t) | ||
503752744 | f'(x)-g'(x) | ||
503752745 | uvw'+uv'w+u'vw | ||
503752746 | cos(x) | ||
503752747 | -sin(x) | ||
503752748 | sec²(x) | ||
503752749 | -csc²(x) | ||
503752750 | sec(x)tan(x) | ||
503752751 | dy/dx | ||
503752752 | f'(g(x))g'(x) | ||
503752753 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | |
503752754 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | |
503752755 | Rolle's Theorem | Let f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval). | |
503752756 | Mean Value Theorem | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | |
503752757 | First Derivative Test for local extrema | ||
503752758 | Point of inflection at x=k | ||
503752759 | Combo Test for local extrema | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | |
503752760 | Horizontal Asymptote | ||
503752761 | L'Hopital's Rule | ||
503752762 | x+c | ||
503752763 | sin(x)+C | ||
503752764 | -cos(x)+C | ||
503752765 | tan(x)+C | ||
503752766 | -cot(x)+C | ||
503752767 | sec(x)+C | ||
503752768 | -csc(x)+C | ||
503752769 | Fundamental Theorem of Calculus #1 | The definite integral of a rate of change is the total change in the original function. | |
503752770 | Fundamental Theorem of Calculus #2 | ||
503752771 | Mean Value Theorem for integrals or the average value of a functions | ||
503752772 | ln(x)+C | ||
503752773 | -ln(cosx)+C = ln(secx)+C | hint: tanu = sinu/cosu | |
503752774 | ln(sinx)+C = -ln(cscx)+C | ||
503752775 | ln(secx+tanx)+C = -ln(secx-tanx)+C | ||
503752776 | ln(cscx+cotx)+C = -ln(cscx-cotx)+C | ||
503752777 | If f and g are inverses of each other, g'(x) | ||
503752778 | Exponential growth (use N= ) | ||
503752779 | Area under a curve | ||
503752780 | Formula for Disk Method | Axis of rotation is a boundary of the region. | |
503752781 | Formula for Washer Method | Axis of rotation is not a boundary of the region. | |
503752782 | Inverse Secant Antiderivative | ||
503752783 | Inverse Tangent Antiderivative | ||
503752784 | Inverse Sine Antiderivative | ||
503752785 | Derivative of eⁿ | ||
503752786 | ln(a)*aⁿ+C | ||
503752787 | Derivative of ln(u) | ||
503752788 | Antiderivative of f(x) from [a,b] | ||
503752789 | Opposite Antiderivatives | ||
503752790 | Antiderivative of xⁿ | ||
503752791 | Adding or subtracting antiderivatives | ||
503752792 | Constants in integrals | ||
503752793 | Identity function | D: (-∞,+∞) R: (-∞,+∞) | |
503752794 | Squaring function | D: (-∞,+∞) R: (o,+∞) | |
503752795 | Cubing function | D: (-∞,+∞) R: (-∞,+∞) | |
503752796 | Reciprocal function | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | |
503752797 | Square root function | D: (0,+∞) R: (0,+∞) | |
503752798 | Exponential function | D: (-∞,+∞) R: (0,+∞) | |
503752799 | Natural log function | D: (0,+∞) R: (-∞,+∞) | |
503752800 | Sine function | D: (-∞,+∞) R: [-1,1] | |
503752801 | Cosine function | D: (-∞,+∞) R: [-1,1] | |
503752802 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | |
503752803 | Greatest integer function | D: (-∞,+∞) R: (-∞,+∞) | |
503752804 | Logistic function | D: (-∞,+∞) R: (0, 1) | |
503752805 | Given f(x): Is f continuous @ C Is f' continuous @ C | Yes lim+=lim-=f(c) No, f'(c) doesn't exist because of cusp | |
503752806 | Given f'(x): Is f continuous @ c? Is there an inflection point on f @ C? | This is a graph of f'(x). Since f'(C) exists, differentiability implies continuouity, so Yes.
Yes f' decreases on X |