AP CALCULUS BC REVIEW Flashcards
Stuff I need to remember
Terms : Hide Images [1]
365417161 | d/dx[tanx] | sec²x⋅x' | |
365417162 | d/dx[cotx] | -csc²x⋅x' | |
365417163 | d/dx[secx] | secxtanx⋅x' | |
365417164 | d/dx[cscx] | -cscxcotx⋅x' | |
365417165 | d/dx[arcsinx] | 1/√(1-x²)⋅x' | |
365417166 | d/dx[arccosx] | -d/dx[arcsinx] | |
365417167 | d/dx[arctanx] | 1/√(1+x²)⋅x' | |
365417168 | d/dx[arccotx] | -d/dx[arctanx] | |
365417169 | d/dx[arcsecx] | 1/√(|u|√x²-1).x' | |
365417170 | d/dx[arccscx] | -d/dx[arcsecx] | |
365417171 | d/dx[a^x] | a^x⋅lna⋅x' | |
365417172 | d/dx[log(a)x] | 1/(xlna)⋅x' | |
365417173 | d/dx[ƒ⁻¹(x)] | 1/(f'(f₋¹(x))) | |
365417174 | ∫a^x⋅dx | a^x/lna+C | |
365417175 | ∫tanx⋅dx | -ln|cosx|+C | |
365417176 | ∫cotx⋅dx | ln|sinx|+C | |
365417177 | ∫secx⋅dx | ln|secx+tanx|+C | |
365417178 | ∫cscx⋅dx | -ln\cscx+cotx|+C | |
365417179 | ∫lnx⋅dx | xlnx-x+C |