Physics Formula Flashcards
Terms : Hide Images [1]
793494829 | Time -independent kinematics equation | V^2=(V_0)^2+2ax | |
793494830 | Netforce | ∑F = ma | |
793494831 | Force in terms of momentum | F = dp/dt | |
793494832 | Impulse | J ⃑=∫Fdt | |
793494833 | Definition of momentum | p = mV | |
793494834 | Impulse - Momentum Theorem | J =Δp | |
793494835 | Force of Friction | F=μF | |
793494836 | Work done by a constant force(dot product) | w = F*d | |
793494837 | Work done by a variable force(integral) | W=∫F*ds | |
793494838 | Kinetic Energy | E = (1/2)mv^2 | |
793494839 | Power | p = dW/dt | |
793494840 | Power - alternate expression | p = F*v | |
793494841 | Work - Energy Theorem | W = ΔE | |
793494842 | Centripetal Acceleration | a= V^2/r | |
793494843 | Torque | τ = r × F | |
793494844 | Newton's Second law for rotation | ∑τ =Iα | |
793494845 | moment of inertia of a collection particles | ∑m*r^2 | |
793494846 | Rotational inertia of a solid sphere | I = 2m*r^2/5 | |
793494847 | Rotational inertia of a rod center | I = ml^2/12 | |
793494848 | Angular momentum of a moving particle | l = r x p | |
793494849 | angular momentum of a rigid rotation body | L = Iω | |
793494850 | Position of center of mass for a collection of particles | r=(∑m*r)/M | |
793494851 | Conversion between linear and angular velocity | ω ×r =V →V=rω | |
793494852 | Rotational kinetic energy | E= (1/2)Iω^2 | |
793494853 | Force of a spring | F= -kx | |
793494854 | Potential energy of a spring | U = (1/2)kx^2 | |
793494855 | Period of a spring mass system | T=2π√(m/k) | |
793494856 | Period of a simple pendulum | T=2π√(l/g) | |
793494857 | Relationships between period, frequency and angular frequency | 1/T=f=ω/2π | |
793494858 | Newton's law of Gravitation | F=G(m_1*m_2)/r^2 | |
793494859 | Gravitational Potential Energy | U=-G (m_1*m_2)/r | |
793494860 | Coulomb's law (using 4πεo) | F=(1/4πϵ) ((q_1*q_2)/r^2) | |
793494861 | Definition of Electric field | E = F/q | |
793494862 | Force on Electric Charge by both E and B ("Lorentz Force law") | F =q(E +v ×B) | |
793494863 | Gauss's Law (closed integral) | Φ=∯〖E *dA 〗=q_enc/ϵ | |
793494864 | Calculating the potential V from field E (integral) | V=-∫E *dr 〗 | |
793494865 | Electric Potential Due to a Point Charge | V=(1/4πϵ_0 ) (q/r) | |
793494866 | Electric Potential: Collection of Point charges (sigma) | V=∑V(point) → ∑(1/4πϵ_0 ) (q/r) | |
793494867 | Electric Potential Due to a Continuous Distribution of charge (integral) | V=1/(4πϵ_0 ) ∫dQ/R | |
793494868 | Electric Potential Energy: Collection of Point Charges | U_E=(1/4πϵ_0 ) ∑(Q_i q)/r_i | |
793494869 | Capacitance Defined | C=q/V | |
793494870 | Capacitance: Parallel-Plate Capacitor | C=(kϵ_0 A)/d | |
793494871 | Energy Stored in a Charged Capacitor | Ucap= q^2/2C =1/2 CV^2 | |
793494872 | Current Defined | i = dq/dt | |
793494873 | resistance | R = pl/A | |
793494874 | Ohm's Law | R = V/i | |
793494875 | Resistors in series | R = ∑R | |
793494876 | Resistors in parallel | 1/R = ∑1/R | |
793494877 | Capacitors in series | 1/C = ∑1/C | |
793494878 | Capacitors in parallel | C = ∑C | |
793494879 | capacities time constant | τ=RC | |
793494880 | Ampere's law | ∮〖B *ds 〗=μ i_enc | |
793494881 | Law of Biot and Savart | dB=(μsinθ)/(4πr^2 ) ids | |
793494882 | Magnetic Force on a Current Carrying Wire | F=il×B | |
793494883 | Magnetic Field of a Long Straight Wire | B=(μ_0 i)/2πR | |
793494884 | Magnetic Field at the Center of a Circular Arc | B=(μ*iφ)/4πR | |
793494885 | Magnetic Field inside an ideal solenoid | B=μ* in | |
793494886 | Inductive Time Constant | τ=L/R | |
793494887 | Magnetic Flux | Φ=∯〖B *dA 〗 | |
793494888 | Faraday's Law | ε=-N (dΦ/dt) | |
793494889 | Energy Stored in a Current Carrying Inductor | U=(1/2)LI^2 |