AP Physics C Equations- Mechanics Flashcards
Terms : Hide Images [1]
787733061 | Displacement | ∆x=x2-x1 | |
787733062 | Average Velocity | v=∆x/∆t | |
787733063 | Average Speed | v=distance/∆time | |
787733064 | Constant Acceleration (w/o x) | v=v₀+at | |
787733065 | Constant Acceleration (w/o v final) | x = v₀t + ½at² | |
787733066 | Constant Acceleration (w/o t) | v²=v₀²+2ax | |
787733067 | Constant Acceleration (w/o a) | ∆x=½(v₀+v)t | |
787733068 | Instant Acceleration | ∆v/∆t | |
787733069 | Circular Acceleration | a=v²/r | |
787733070 | Newton's 2nd Law | F=ma | |
787733071 | Weight | W=mg | |
787733072 | Static Friction (Max) | f(smax)≤µsN | |
787733073 | Kinetic Friction | f(k)=µkN | |
787733074 | Work (F isn't constant) | W=∫F dx = ∆K | |
787733075 | Work (F is constant) | W=Fxcosθ | |
787743831 | Force (in terms of energy) | F=-dU/dt | |
787743832 | Potential Energy | U=mgh | |
787743833 | Spring Potential Energy | U=½kx² | |
787743834 | Kinetic Energy | K=½mv² | |
787743835 | Power (in terms of work) | P=dW/dt | |
787743836 | Power | F ° v | |
787743837 | Center of Mass | x(center of mass) = m₁x₁+m₂x₂/(M total) | |
787743838 | Center of Mass Velocity | v(center of mass) = m₁v₁+m₂v₂/(M total) | |
787743839 | Momentum | p=mv | |
787897717 | Momentum in Inelastic Collision | m₁v₁+m₂v₂=m₁m₁f+m₂v₂f | |
787897718 | Impulse | J=∆p | |
787897719 | Impulse (Integral) | J=∫F dt | |
787897720 | Angular Displacement | θ | |
787897721 | Angular Velocity | w=dθ/dt | |
787897722 | Angular Acceleration | α=dw/dt | |
787897723 | Tangential Displacement | s=θr | |
787897724 | Tangential Velocity | v=wr | |
787897725 | Tangential Acceleration | a=αr | |
787897726 | Centripetal/Radial Acceleration | a=w²r=v²/r | |
787897727 | Moment of Inertia (Integral) | I=∫r²dm=∫r²λdr | |
787897728 | Inertia of Hoop | MR² | |
787897729 | Inertia of Disk or Cylinder | ½MR² | |
787897730 | Inertia of Solid Sphere | (2/5)MR² | |
787897731 | Inertia of Sphere Shell | (2/3)MR² | |
787897732 | Inertia of Rod | (1/12)MR² | |
787897733 | Angular Momentum | L=IW | |
787897734 | Angular Momentum (l) | l=mrv | |
787897735 | Torque | t=r x F | |
787897736 | Torque (net) | t=dL/dt=Iα | |
787897737 | Rotational Kinetic Energy | K=½Iw² | |
787897738 | Rolling Velocity Center of Mass | v=wR | |
787897739 | Rolling Energy | K=½Iw²+½mv² | |
787897740 | Work (Angular) | W=∫t ° dθ = ∆K | |
787897741 | Power (Angular) | P=dW/dt= r ° w | |
787897742 | Gravitational Potential Energy | U=-GMm/r | |
787897743 | Gravitational Kinetic Energy | K=GMm/2r | |
787897744 | Total Gravitational Energy | E=U+K=-GMm/2r | |
787897745 | Escape Velocity | v=√2GM/r | |
787897746 | Newton's Universal Law of Gravitation | F=GMm/r² | |
787897747 | Newton's Law of Gravitation (inside planet) | F=GMmr/R³ | |
787897748 | Definition of Simple Harmonic Motion | a=-w²x | |
787897749 | Definition of Simple Harmonic Motion (Angular) | α=-w²θ | |
787897750 | Simple Harmonic Motion Equation (distance) | x=Acos(wt+∅) | |
787897751 | Frequency | f=1/T=w/2π | |
787897752 | Period of Oscillation in Spring | T=2π√m/k | |
787897753 | Spring Velocity (Oscillation) | w=√k/m | |
787897754 | Period of a Pendulum | T=2π√L/g |