CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > Integrals Flashcards

Integrals Flashcards

Terms : Hide Images [1]
458705322∫c f(x) dxc ∫f(x) dx
458705323∫k dxkx + C
458705324∫xⁿ dxxⁿ⁺¹ ÷ [n + 1] + C where n ≠ -1
458705325∫[1 ÷ x] dxln|x| +C
458705326∫eˣ dxeˣ + C
458705327∫aˣ dx[aˣ ÷ ln(a)] + C
458705328∫sin(x) dx-cos(x) + C
458705329∫cos(x) dxsin(x) + C
458705330∫sec²(x) dxtan(x) + C
458705331∫csc²(x) dx-cot(x) + C
458705332∫[sec(x) tan(x)] dxsec(x) + C
458705333∫[csc(x) cot(x)] dx-csc(x) + C
458705334∫tan(x) dxln|sec(x)| + C ∫[sin(x) sec(x)] dx, let u = cos(x) ∴ dx = [-1 ÷ sin(x)] × du sin(x) factor cancels and it becomes ∫[1 ÷ u] du
458705335∫sec(x) dxln|[sec(x) + tan(x)]| + C ∫sec(x)[sec(x) + tan(x) ÷ sec(x) + tan(x)] dx = ∫[sec²(x) + sec(x)tan(x)] ÷ [sec(x) + tan(x)] dx let u = sec(x) + tan(x) ∴ dx = [1 ÷ [sec(x) tan(x) + sec²(x)] du the equation becomes ∫[1 ÷ u] du
458705336∫[1 ÷ (x² + 1)] dxarctan(x) + C
458705337∫[1 ÷ √(1 - x²)] dxarcsin(x) + C
458705338Riemann Sumlim (n→∞) ∑ f(xᵢ) ∆x where ∆x = (b-a) ÷ n xᵢ = a + i ∆x
458705339∑ i[n(n + 1)] ÷ 2
458705340∑ i²[n(n + 1)(2n + 1)] ÷ 6
458705341∑ i³([n(n + 1)] ÷ 2)²
458705342fₐᵥ[1 ÷ (b - a)] ∫f(x) dx from a to b
458705343∫(a to b) f(x)g'(x)dx[f(x)g(x) (a to b)] - [∫(a to b) f'(x)g(x)dx
458705344∫sinⁿ(x)cosᵐ(x)dx where m is oddextract one factor of cos(x), turn remaining into factors of sin using cos²(x) = 1-sin²(x), then let u=sin(x)
458705345∫sinⁿ(x)cosᵐ(x)dx where n is oddextract one factor of sin(x), turn remaining into factors of cos using sin²(x) = 1-cos²(x), then let u=cos(x)
458705346∫tanⁿ(x)secᵐ(x)dx where m is evenextract one factor of sec²(x), turn remaining into factors of tan using sec²(x) = 1-tan²(x), then let u=tan(x)
458705347∫tanⁿ(x)secᵐ(x)dx where n is oddextract one factor of sec(x)tan(x), turn remaining into factors of sec using tan²(x) = sec²(x)-1, then let u=sec(x)
458705348∫√(a²-x²)]dxx = a sinθ
458705349∫√(a²+x²)]dxx = a tanθ
458705350∫√(x²-a²)]dxx = a secθ
458705351R(x) ÷ [(a₁x + b)(a₂x + b)][A ÷ (a₁x + b)] + [B ÷ (a₂x + b)]
458705352R(x) ÷ [(ax + b)²][A ÷ (ax + b)] + [B ÷ (ax + b)²]
458705353R(x) ÷ [ax² + bx + c](Ax + B) ÷ (ax² + bx + c)
458705354Trapezoidal Rule for Integral Approximation(∆x/2) [f(x₀) + 2f(x₁) + ... + 2f(xᵢ₋₁) + f(xᵢ)]
458705355Simpson's Rule for Integral Approximation(∆x/3) [f(x₀) + 4f(x₁) + 2f(x₂) + 4f(x₃) + ... + 4f(xᵢ₋₁) + f(xᵢ)]
458705356convergence of ∫[1 ÷ xᵖ]dxconvergent for p > 1 divergent for p ≤ 1
458705357Mᵧρ ∫(a to b) x f(x) dx
458705358Mᵪρ ∫(a to b) ½ [f(x)]² dx
458705359x̄(1/A) ∫(a to b) x [f(x) - g(x)] dx
458705360ȳ(1/A) ∫(a to b) ½ {[f(x)]² - [g(x)]²} dx
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/integrals_flashcards#comment-0

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/