CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > Calculus BC Formula Review Flashcards

Calculus BC Formula Review Flashcards

Terms : Hide Images [1]
772336699(f*g)'f'g+g'f0
772336700(f/g)'(f'g-g'f)/g²1
772336701(f(g))'f'(g)*g'2
772336702(sin(x))'cos(x)3
772336703(cos(x))'-sin(x)4
772336704(tan(x))'sec(x)²5
772336705(cot(x))'-csc(x)²6
772336706(sec(x))'sec(x)tan(x)7
772336707(csc(x))'-csc(x)cot(x)8
772336708(e^x)'e^x9
772336709(a^x)'a^x*ln(a)10
772336710(ln(x))'1/x11
772336711(arcsin(x) or arccos(x))'±dx/√(1-x²)12
772336712(arctan(x) or arccot(x))'±dx/(1+x²)13
772336713(arcsec(x) or arccsc(x))'±dx/(x²-1)14
772336716∫x⁻¹dxln(x)15
772336717∫e^xdxe^x+C16
772336718∫a^xdxa^x/ln(a)+C17
772336719∫ln(x)dxxln(x)-x+C18
772336720∫sin(x)dx-cos(x)+C19
772336721∫cos(x)dxsin(x)+C20
772336722∫tan(x)dxln|sec(x)|+C21
772336723∫cot(x)dxln|sin(x)|+C22
772336724∫sec(x)dxln|sec(x)+tan(x)|+C23
772336725∫csc(x)dxln|csc(x)-cot(x)|+C24
772336726∫sec²(x)dxtan(x)+C25
772336727∫csc²(x)+C-cot(x)+C26
772336728∫sec(x)tan(x)dxsec(x)+C27
772336729∫csc(x)cot(x)-csc(x)+C28
772376073∫dx/(a²+x²)a⁻¹arctan(x/a)+C29
772376074∫dx/√(a²-x²)arcsin(x/a)+C30
772376075∫dx/√(x²-a²)a⁻¹arcsec(x/a)+C31
772376076a function f(x) is continuous at x=a if1. f(a) exists 2. lim x→a f(x) exists 3. lim x→a f(x) = f(a)32
772376077intermediate value theorema function f(x) that is continuous on a closed interval [a,b] takes on every value between f(a) and f(b)33
772397866average rate of changeif (x₀, y₀) and (x₁, y₁) are points on the graph of y=f(x), then the average rate of change of y with respect to x over the interval [x₀, x₁] is (f(x₁)-f(x₀))/(x₁-x₀)34
772397867definition of the derivativef'(x) = lim h→0 (f(x+h)-f(x))/h f'(a) = lim x→a (f(x)-f(a))/(x−a)35
772397868lim x→+∞ (1+x/n)^ne^x36
772397869lim x→0 (1+n)^(1/n)e37
772421578rolle's theoremif f(x) is continuous on [a,b] and differential on (a,b) and f(a)=f(b), then there is at least one number c in the open interval (a,b) such that f'(c)=038
772421579mean value theoremif f(x) is continuous on [a,b] and differential on (a,b), then there is at least one number c in (a,b) such that f'(c)=(f(b)-f(a))/(b-a)39
772421580extreme value theoremif f is continuous on a closed interval [a,b] , then f(x) has both an absolute maximum and an absolute minimum on (a,b)40
7725133721st fundamental theorem of calculusfrom a to b ∫f(x)dx = F(b)-F(a), where F'(x)=f(x)41
7725525632nd fundamental theorem of calculusif F(x)=from x to 0 ∫f(t)dt, then F'(x)=f(x) if F(x)=from u(x) to 0 ∫f(t)dt, then F'(x)=f(u(x))*u'(x)42
772552564dP/dt (logistics)kP(1-P/L) L is carrying capacity; k is constant of proportionality43
772552565P (logistics)L/(1+A^(-kt)) A=(L-P₀)/P₀44
772589901washer methodfrom a to b π∫(r₁²-r₂²)dx45
772589902disc methodfrom a to b π∫r²dx around x axis from c to d π∫r²dy around y axis46
772589903shell methodfrom a to b 2π∫p(y)h(y)dy around x axis from c to d 2π∫p(x)h(x)dx around y axis47
772589904maclaurin polynomial of e^x1+x+x²/2!+x³/3!+x⁴/4!+...x^n/n!48
772589905maclaurin polynomial of sinxx−x³/3!+x⁵/5!+...(-1)^n*x^(2n+1)/(2n+1)!49
772589906maclaurin polynomial of cosx1-x²/2!+x⁴/4!+...(-1)^n*x^(2n)/(2n)!50
772589907maclaurin polynomial of (1-x)⁻¹1+x+x²+x³+x⁴+...x^n51
772589908maclaurin polynomial of lnx(x-1)−(x-1)²/2+(x-1)³/3−(x-1)⁴/4+...(x-1)^n/n52
772595110nth term testlim x→∞f(x)≠0, the series diverges53
772614773lim n→∞ ln(n)/n054
772614774lim n→∞ x^(1/n)155
772614775lim n→∞ n^(1/n)156
772614776lim n→∞ x^n; |x|<0057
772614777lim n→∞ x^n/n!058
772622316sin2x2sinxcosx59
772622317cos2xcos²x-sin²x=2cos²x-1=1-2sin²x60
772622318tan2x2tanx/(1-tan²x)61
773461205if g(x) is the inverse of f(x), theng'(x)=1/(f'(g(x)))62
773461206average value of f(x) on [a,b]1/(b-a)∫ (from a to b) f(x) dx63
773461207integration by parts formula∫udv=uv - ∫vdu64
773461208LIATEin order: logarithmic function, inverse trig function, algebraic function, trig function, exponential function65
773461209euler's methody₁ = y₀ + h*f'(x₀, y₀) informally: ynew= yold + step size*derivative at the previous point66
773461210arc lengths = ∫ (from a to b) √(1+[f'(x)]²) dx67
773461211arc length in parametric forms = ∫ (from a to b) √[(dx/dt)² + (dy/dt)²] dt68
773482019sin²x(1-cosx)/269
773482020cos²x(1+cosx)/270
773590388newton's law of coolingdy/dt=k(y−y₀)71
773590389work∫ (from a to b) F*d*dx72
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/calculus_bc_formula_review_flashcards#comment-0

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/