Trigonometry Flashcards
Terms : Hide Images [1]
2092352077 | Right Triangle Def. sin θ = | Opposite/Hypotenuse | 0 | |
2092352078 | Right Triangle Def. cos θ = | Adjacent/Hypotenuse | 1 | |
2092352079 | Right Triangle Def. tan θ = | Opposite/Adjacent | 2 | |
2092352080 | Right Triangle Def. csc θ = | Hypotenuse/Opposite | 3 | |
2092352081 | Right Triangle Def. sec θ = | Hypotenuse/Adjacent | 4 | |
2092352082 | Right Triangle Def. cot θ = | Adjacent/Opposite | 5 | |
2092352083 | Unit Circle Def. sin θ = | y/1 = y | 6 | |
2092352084 | Unit Circle Def. cos θ = | x/1 = x | 7 | |
2092352085 | Unit Circle Def. tan θ = | y/x | 8 | |
2092352086 | csc θ = | 1/y | 9 | |
2092352087 | sec θ = | 1/x | 10 | |
2092352088 | cot θ = | x/y | 11 | |
2092352089 | Domain | All the values of θ that can be plugged into the function. | 12 | |
2092352090 | Domain of sinθ | Any Angle | 13 | |
2092352091 | Domain of cosθ | Any Angle | 14 | |
2092352092 | Domain of tanθ | ≠(n+1/2)π, n=0,±1,±2... | 15 | |
2092352093 | Domain of secθ | ≠(n+1/2)π, n=0,±1,±2... | 16 | |
2092352094 | Domain of cscθ | ≠nπ, n=0,±1,±2... | 17 | |
2092352095 | Domain of cotθ | ≠nπ, n=0,±1,±2... | 18 | |
2092355184 | Range | All possible values to get out of the function | 19 | |
2092355185 | Range of values for sin | -1≤sinθ≤1 | 20 | |
2092355186 | Range of values for cos | -1≤cosθ≤1 | 21 | |
2092355187 | Range of values for tan | -∞22 | | |
2092355188 | Range of values for csc | cscθ≥1 and cscθ≤-1 | 23 | |
2092355189 | Range of values for sec | secθ≥1 and secθ≤-1 | 24 | |
2092355190 | Range of values for cot | -∞25 | | |
2092357756 | Period | The number, T, of a function such that f(θ+T) = f(θ). So if w is a fixed number and θ is any angle we have a period such as sin(wθ) → T=(2π/w) | 26 | |
2092357757 | Period of sin(wθ) | T = 2π/w | 27 | |
2092357758 | Period of cos(wθ) | T = 2π/w | 28 | |
2092357759 | Period of tan(wθ) | T = π/w | 29 | |
2092357760 | Period of csc(wθ) | T = 2π/w | 30 | |
2092357761 | Period of sec(wθ) | T = 2π/2 | 31 | |
2092357762 | Period of cot(wθ) | T = π/w | 32 | |
2098578655 | Identity tanθ | sinθ/cosθ | 33 | |
2098578656 | Identity cotθ | cosθ/sinθ | 34 | |
2098578657 | Reciprocal identity csc θ = | 1/sinθ | 35 | |
2098578658 | Reciprocal Identity sin θ = | 1/ cscθ | 36 | |
2098578659 | Reciprocal Identity sec θ = | 1/ cosθ | 37 | |
2098578660 | Reciprocal Identity cos θ = | 1/ secθ | 38 | |
2098578661 | Reciprocal Identity cot θ = | 1/ tanθ | 39 | |
2098578662 | Reciprocal Identity tan θ = | 1/ cotθ | 40 | |
2098578663 | Pythagorean Identity (sin^2)θ + (cos^2)θ = | 1 | 41 | |
2098578664 | Pythagorean Identity (tan^2)θ + 1 = | (sec^2)θ | 42 | |
2098578665 | Pythagorean Identity 1 + (cot^2)θ = | (csc^2)θ | 43 | |
2098578666 | Even/Odd Formulas sin(-θ) = | -sinθ | 44 | |
2098578667 | Even/Odd Formulas cos(-θ) = | cosθ | 45 | |
2098578668 | Even/Odd Formulas tan(-θ) = | -tanθ | 46 | |
2098578669 | Even/Odd Formulas csc(-θ) = | -cscθ | 47 | |
2098578670 | Even/Odd Formulas sec(-θ) = | secθ | 48 | |
2098578671 | Even/Odd Formulas cot(-θ) = | -cotθ | 49 | |
2098578672 | Periodic Formulas sin(θ + 2πn) = | sinθ | 50 | |
2098578673 | Periodic Formulas cos(θ + 2πn) = | cosθ | 51 | |
2098578674 | Periodic Formulas tan(θ + 2πn) = | tanθ | 52 | |
2098578675 | Periodic Formulas csc(θ + 2πn) = | cscθ | 53 | |
2098578676 | Periodic Formulas sec(θ + 2πn) = | secθ | 54 | |
2098578677 | Periodic Formulas cot(θ + πn) = | cotθ | 55 | |
2098578678 | Double Angle Formulas sin(2θ) = | 2sinθcosθ | 56 | |
2098578679 | Double Angle Formulas cos(2θ) = | (cos^2)θ - (sin^2)θ = 2(cos^2)θ - 1 = 1-2(sin^2)θ | 57 | |
2098578680 | Double Angle Formulas tan(2θ)= | (2tanθ)/(1-(tan^2)θ | 58 | |
2098578681 | Radians to Degrees formula x = degrees t = radians | Degrees = 180(radians)/π | 59 | |
2098578682 | Degrees to Radians formula x = degrees t = radians | Radians = [π(degrees)]/180 | 60 | |
2098578683 | Half Angle Formulas (sin^2)θ = | (1/2) (1-cos(2θ)) | 61 | |
2098578684 | Half Angle Formulas (cos^2)θ = | (1/2) (1+cos(2θ)) | 62 | |
2098578685 | Half Angle Formula (tan^2)θ = | (1-cos(2θ))/(1+cos(2θ)) | 63 | |
2098578686 | Sum and Difference Formulas sin (α±β)= | (sinα*cosβ) ± (cosα*sinβ) | 64 | |
2098578687 | Sum and Difference Formulas cos (α±β)= | (cosα*cosβ) ± (sinα*sinβ) | 65 | |
2098578688 | Sum and Difference Formulas tan (α±β)= | (tanα ± tanβ)/(1±(tanα*tanβ) | 66 | |
2098578689 | Product to Sum Formulas (sinα*sinβ) = | (1/2)[cos(α-β) - cos(α+β)] | 67 | |
2098578690 | Product to Sum Formulas (cosα*cosβ) = | (1/2)[cos(α-β)+cos(α±β)] | 68 | |
2098578691 | Product to Sum Formulas (sinα*cosβ) = | (1/2)[sin(α+β)+sin(α-β)] | 69 | |
2098578692 | Product to Sum Formulas (cosα*sinβ) = | (1/2)[sin(α+β)-sin(α-β)] | 70 | |
2098578693 | Sum to Product Formulas sinα+sinβ | 2sin[(α+β)/2] * cos[(α-β)/2] | 71 | |
2098578694 | Sum to Product Formulas sinα-sinβ | 2cos[(α+β)/2] * sin[(α-β)/2] | 72 | |
2098578695 | Sum to Product Formulas cosα + cosβ | 2cos[(α+β)/2] * cos[(α-β)/2] | 73 | |
2098578696 | Sum to Product Formulas cosα - cosβ | 2sin[(α+β)/2] * sin[(α-β)/2] | 74 | |
2098578697 | Cofunction Formulas sin[(π/2)-θ] = | cosθ | 75 | |
2098578698 | Cofunction Formulas cos[(π/2)-θ] = | sinθ | 76 | |
2098578699 | Cofunction Formulas csc[(π/2)-θ] = | secθ | 77 | |
2098578700 | Cofunction Formulas sec[(π/2)-θ] = | cscθ | 78 | |
2098578701 | Cofunction Formulas tan[(π/2)-θ] = | cotθ | 79 | |
2098578702 | Cofunction Formulas cot[(π/2)-θ] = | tanθ | 80 |