Calc Flashcards
Terms : Hide Images [1]
120024134 | -cos x + c | ∫ sin x dx | 0 | |
120024135 | sin x + c | ∫ cos x dx | 1 | |
120024136 | tan x + c | ∫ sec2 x dx | 2 | |
120024137 | -cot x + c | ∫ csc2 x dx | 3 | |
120024138 | sec x + c | ∫ sec x tan x dx | 4 | |
120024139 | -csc x + c | ∫ csc x cot x dx | 5 | |
120024140 | -ln |cos x| + c | ∫ tan x dx | 6 | |
120024141 | ln |sin x| + c | ∫ cot x dx | 7 | |
120024142 | ln |sec x + tan x| + c | ∫ sec x dx | 8 | |
120024143 | -ln |csc x + cot x| + c | ∫ csc x dx | 9 | |
120024144 | ln |u| + c | ∫ 1/u du | 10 | |
120024145 | e^u + c | ∫ e^u du | 11 | |
120024146 | (e^kx)(1/k) + c | ∫ e^kx dx | 12 | |
120024147 | (a^u)(1/ln a) + c | ∫ a^u du | 13 | |
120024148 | -cos x + c | ∫ sin x dx | 14 | |
120024149 | sin x + c | ∫ cos x dx | 15 | |
120024150 | tan x + c | ∫ sec2 x dx | 16 | |
120024151 | -cot x + c | ∫ csc2 x dx | 17 | |
120024152 | sec x + c | ∫ sec x tan x dx | 18 | |
120024153 | -csc x + c | ∫ csc x cot x dx | 19 | |
120024154 | -ln |cos x| + c | ∫ tan x dx | 20 | |
120024155 | ln |sin x| + c | ∫ cot x dx | 21 | |
120024156 | ln |sec x + tan x| + c | ∫ sec x dx | 22 | |
120024157 | -ln |csc x + cot x| + c | ∫ csc x dx | 23 | |
120024158 | ln |u| + c | ∫ 1/u du | 24 | |
120024159 | e^u + c | ∫ e^u du | 25 | |
120024160 | (e^kx)(1/k) + c | ∫ e^kx dx | 26 | |
120024161 | (a^u)(1/ln a) + c | ∫ a^u du | 27 | |
120024162 | d/dx(sin(x)) | cos(x) | 28 | |
120024163 | d/dx(cos(x)) | -sin(x) | 29 | |
120024164 | d/dx(tan(x)) | (sec(x))^2 | 30 | |
120024165 | d/dx(cot(x)) | -(csc(x))^2 | 31 | |
120024166 | d/dx(sec(x)) | sec(x)tan(x) | 32 | |
120024167 | d/dx(csc(x)) | -csc(x)cot(x) | 33 | |
120024168 | sin^-1 (u/a) + c | ∫ du / (sqrt(a^2+u^2)) | 34 | |
120024169 | ∫ e^u du | e^u | 35 | |
120024170 | ∫ du / (1-u^2)^.5 = | arcsin u | 36 | |
120024171 | ∫ du / (1+u^2) = | arctan u | 37 |