CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > Barron's SAT 2 Math Terms and Formulae Flashcards

Barron's SAT 2 Math Terms and Formulae Flashcards

Terms : Hide Images [1]
2376616087DomainInput numbers, the x-values of a function0
2376616532RangeOutput numbers, the y-values of a function1
2376618025FunctionA process that changes a set of input numbers into a set of output numbers. One input number will always produce the same output number.2
2376621319RelationThe association between two variables. Does not have to be a function since a function is a special type of relation.3
2376624644(f + g)(x)f(x) + g(x)4
2376625687(f - g)(x)f(x) - g(x)5
2376627266(f * g)(x)f(x) * g(x)6
2376631664(f / g)(x)f(x) / g(x), g(x) ≠ 07
2376635534(f * g)(x) (Composition of Functions)f(g(x))8
2376636484(g * f)(x) (Composition of Functions)g(f(x))9
2376641173InverseDenoted by a ⁻¹. Relation that has the property where (f⁻¹ * f)(x) = (f * f⁻¹)(x) = x. If inverse of a function is not a function, you can make it one by limiting the domain. Reflection of original function over line x=y.10
2376655119Even (function)If f(-x)=f(x) for all domain. Outputs are equal for opposite inputs.11
2376660573Odd (function)If f(-x)=-f(x) for all domain. Outputs are opposite for opposite inputs.12
2376930226Linear Functionmx + b graph of a line13
2376933327Slope of a line(y₂ - y₁)/(x₂ - x₁)14
2376934592Y-interceptb (value of y when x is zero)15
2376936737point-slope formy - y₁ = m(x - x₁)16
2376939573General Equation or Standard FormAx + By = C17
2376942018Slope (Standard Form)-A/B18
2376942569y-intercept (Standard Form)C/B19
2376944497Distance Formula√(x₂ - x₁)² + (y₂ - y₁)²20
2376946457Midpoint((x₁ + x₂)/2, (y₁ + y₂)/2)21
2376985471QuadraticPolynomial where the largest exponent is 2. Standard is ax²+bx+c.22
2376988721X-coordinate of the vertex of parabola (Quadratic)h= -b/2a23
2376991271Y-coordinate of the vertex of parabola (Quadratic)k = (4ac-b²)/4a24
2377128955MultiplicityNumber of times a particular value appears as the root of a polynomial.25
2377140309Fundamental Theory of AlgebraThe sum of the multiplicities is the number of roots in a polynomial They are both equal to the degree of the polynomial.26
2377161021a³ + b³(a + b) (a² - ab + b²)27
2377162510a³ - b³(a - b) (a² + ab + b²)28
2377200181Rational Rootsp/q p is factor of the constant at the end. q is factor of the constant in front of the x value with the largest integer.29
2380440585Law of Sinessin A/a = sin B/b = sin C/c30
2380441314Law of Cosinesa² = b² + c² - 2 b c cos A b² = a² + c² - 2 a c cos B c² = a² + b² - 2 a b cos C31
2380506280Area of a Triangle with Sinearea = 1/2 ab sin C area = 1/2 bc sin A area = 1/2 ca sin B32
2380570569sin θy/r33
2380570570cos θx/r34
2380570571tan θy/x35
2380570572cot θx/y36
2380570573sec θr/x37
2380570815csc θr/y38
2381512188sin² θ + cos² θ139
23815133871 + tan² θsec² θ40
2381515466cot² θ + 1csc² θ41
2381518548length of arc srθ42
2381519045area of circle sector(1/2)r² θ43
2381572184trig functiony = A * trig(Bx + C) + D44
2381588588AmplitudeVertical dilation, value is |A|45
2381589511Phase Shift-C/B, the horizontal translation46
2381590368PeriodHorizontal dilation, Period of the parent function divided by B47
2381594251Vertical TranslationD48
2381598996csc x (Reciprocal)1/(sin x)49
2381599266sec x (Reciprocal)1/(cos x)50
2381599267cot x (Reciprocal)1/(tan x)51
2381599589sin x (Cofunction)cos (π/2 -x)52
2381600410cos x (Cofunction)sin (π/2 -x)53
2381600411sec x (Cofunction)csc (π/2 -x)54
2381602481csc x (Cofunction)sec (π/2 -x)55
2381602805tan x (Cofunction)cot (π/2 -x)56
2381603676cot x (Cofunction)tan (π/2 -x)57
2381605414sin 2x2(sin x)(cos x)58
2381605684cos 2xcos²x - sin²x 2 cos²x -1 1 - 2 sin²x59
2408735601Natural LogaritmThe inverse of eⁿ or ln x.60
2412743507TranslationOnly moves the graph around the coordinate plane. Using addition61
2412746340Stretching/ShrinkingChanging the scale can change the shape of the graph. Accomplished by multiplication and division.62
2412748542ReflectionKeeps shape and size of graph but changes its orientation. Accomplished by negation.63
2412754022Vertical TransformationOccur when adding, multiplying, or negating happens after the function is applied (to the y).64
2412756508Horizontal TransformationOccur when adding, multiplying, or negating happens before the function is applied (to the x).65
2413008169Order of transformationReflect, change scale, then translate.66
2413056110Parabolax-orientation: (y - k)² = 4p(x - h) y-orientation: (x - h)² = 4p(y - k)67
2413086445Focus: ParabolaPoint that all points on parabola are equidistant to x-orientation: (h + p, k) y-orientation: (h, k + p)68
2413087322Directrix: ParabolaLine that all points on parabola are equidistant to x-orientation: x = h - p y-orientation: x = k - p69
2413091079VertexCenter of the parabola x-orientation: (h, k) y-orientation: (h, k)70
2413128086Ellipsex-orientation: (x - h)²/a² + (y - k)²/b² = 1 where a²>b² y-orientation: (x - h)²/b² + (y - k)²/a² = 1 where a²>b²71
2413178806Center: Ellipse(h, k)72
2413200874Major Axis: Ellipsex-orientation: Points are (h - a, k) and (h + a, k) 2a units long y-orientation: Points are (h , k - a) and (h , k + a) 2a units long73
2413204261Minor Axis: Ellipsex-orientation: Points are (h , k - b) and (h , k + b) 2b units long y-orientation: Points are (h - b, k) and (h + b, k) 2b units long74
2413207866Foci (focus): EllipseDistance of c = √a² - b² from the center x-orientation: (h - c, k) and (h + c, k) y-orientation: (h, k - c) and (h, k + c)75
2413226764Hyperbolax-orientation: (x - h)²/a² - (y - k)²/b² = 1 y-orientation: (y - k)²/a² - (x - h)²/b² = 176
2413234998Center: Hyperbola(h, k)77
2413234999Transverse Axis: HyperbolaAxis is line connecting these two points, horizontal x-orientation: (h - a, k) and (h + a, k) 2a units long y-orientation: (h , k - a) and (h , k + a) 2a units long78
2413235000Foci: HyperbolaDistance of c = √a² - b² from the center x-orientation: (h - c, k) and (h + c, k) y-orientation: (h, k - c) and (h, k + c)79
2413291038Conjugate Axis: HyperbolaAxis is line connecting these two points, horizontal x-orientation: Points are (h , k - b) and (h , k + b) 2b units long y-orientation: Points are (h - b, k) and (h + b, k) 2b units long80
2413291039Asymptotes: Hyperbolax-orientation: y - k = ±(b / a)(x - h) y-orientation: y - k = ±(a / b)(x - h)81
2413349871EccentricityA measure of the degree or elongation of an ellipse or hyperbola. (c / a) Ellipse: The closer c is to a, the more circular the ellipse. Hyperbola: The farther c is from a, the more elongated the hyperbola.82
2413444755Polar Coordinate(r, θ)83
2413460093x (polar)r cos θ84
2413465518y (polar)r sin θ85
2413465519x² + y² (polar)r²86
2474234403What is the modulus of an complex number? a + bi√a² + b²87
2475434087Determinant of a 2x2 martixad - bc88
2475499721SequenceA function with domain consisting of the natural numbers.89
2475500180SeriesSum of terms of a sequence90
2475602997Sum of an infinite geometric seriesa₁/(1-r)91
2475665920Resultant of Vector V (v₁,v₂) and Vector U (u₁,u₂)(v₁ + u₁, v₂ + u₂)92
2479367945The magnitude or norm of Vector V (v₁,v₂)√v₁² + v₂²93
2479505712z-scoredata value = x mean of values = X standard deviation = s (x-X)/s94
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/barrons_sat_2_math_terms_and_formulae_flashcards#comment-0

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/