Calculus Flashcards
Terms : Hide Images [1]
3536720417 | 1 | 0 | ||
3536720418 | 0 | 1 | ||
3536720419 | Squeeze Theorem | 2 | ||
3536720420 | f is continuous at x=c if... | 3 | ||
3536720421 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | 4 | |
3536720422 | Global Definition of a Derivative | 5 | ||
3536720423 | Alternative Definition of a Derivative | f '(x) is the limit of the following difference quotient as x approaches c | 6 | |
3536720424 | nx^(n-1) | 7 | ||
3536720425 | 1 | 8 | ||
3536720426 | cf'(x) | 9 | ||
3536720427 | f'(x)+g'(x) | 10 | ||
3536720428 | The position function OR s(t) | 11 | ||
3536720429 | f'(x)-g'(x) | 12 | ||
3536720430 | uvw'+uv'w+u'vw | 13 | ||
3536720431 | cos(x) | 14 | ||
3536720432 | -sin(x) | 15 | ||
3536720433 | sec²(x) | 16 | ||
3536720434 | -csc²(x) | 17 | ||
3536720435 | sec(x)tan(x) | 18 | ||
3536720436 | dy/dx | 19 | ||
3536720437 | f'(g(x))g'(x) | 20 | ||
3536720438 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | 21 | |
3536720439 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | 22 | |
3536720440 | Rolle's Theorem | Let f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval). | 23 | |
3536720441 | Mean Value Theorem | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | 24 | |
3536720442 | First Derivative Test for local extrema | 25 | ||
3536720443 | Point of inflection at x=k | 26 | ||
3536720444 | Combo Test for local extrema | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | 27 | |
3536720445 | Horizontal Asymptote | 28 | ||
3536720446 | L'Hopital's Rule | 29 | ||
3536720447 | x+c | 30 | ||
3536720448 | sin(x)+C | 31 | ||
3536720449 | -cos(x)+C | 32 | ||
3536720450 | tan(x)+C | 33 | ||
3536720451 | -cot(x)+C | 34 | ||
3536720452 | sec(x)+C | 35 | ||
3536720453 | -csc(x)+C | 36 | ||
3536720454 | Fundamental Theorem of Calculus #1 | The definite integral of a rate of change is the total change in the original function. | 37 | |
3536720455 | Fundamental Theorem of Calculus #2 | 38 | ||
3536720456 | Mean Value Theorem for integrals or the average value of a functions | 39 | ||
3536720457 | ln(x)+C | 40 | ||
3536720458 | -ln(cosx)+C = ln(secx)+C | hint: tanu = sinu/cosu | 41 | |
3536720459 | ln(sinx)+C = -ln(cscx)+C | 42 | ||
3536720460 | ln(secx+tanx)+C = -ln(secx-tanx)+C | 43 | ||
3536720461 | ln(cscx+cotx)+C = -ln(cscx-cotx)+C | 44 | ||
3536720462 | If f and g are inverses of each other, g'(x) | 45 | ||
3536720463 | Exponential growth (use N= ) | 46 | ||
3536720464 | Area under a curve | 47 | ||
3536720465 | Formula for Disk Method | Axis of rotation is a boundary of the region. | 48 | |
3536720466 | Formula for Washer Method | Axis of rotation is not a boundary of the region. | 49 | |
3536720467 | Inverse Secant Antiderivative | 50 | ||
3536720468 | Inverse Tangent Antiderivative | 51 | ||
3536720469 | Inverse Sine Antiderivative | 52 | ||
3536720470 | Derivative of eⁿ | 53 | ||
3536720471 | ln(a)*aⁿ+C | 54 | ||
3536720472 | Derivative of ln(u) | 55 | ||
3536720473 | Antiderivative of f(x) from [a,b] | 56 | ||
3536720474 | Opposite Antiderivatives | 57 | ||
3536720475 | Antiderivative of xⁿ | 58 | ||
3536720476 | Adding or subtracting antiderivatives | 59 | ||
3536720477 | Constants in integrals | 60 | ||
3536720478 | Identity function | D: (-∞,+∞) R: (-∞,+∞) | 61 | |
3536720479 | Squaring function | D: (-∞,+∞) R: (o,+∞) | 62 | |
3536720480 | Cubing function | D: (-∞,+∞) R: (-∞,+∞) | 63 | |
3536720481 | Reciprocal function | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | 64 | |
3536720482 | Square root function | D: (0,+∞) R: (0,+∞) | 65 | |
3536720483 | Exponential function | D: (-∞,+∞) R: (0,+∞) | 66 | |
3536720484 | Natural log function | D: (0,+∞) R: (-∞,+∞) | 67 | |
3536720485 | Sine function | D: (-∞,+∞) R: [-1,1] | 68 | |
3536720486 | Cosine function | D: (-∞,+∞) R: [-1,1] | 69 | |
3536720487 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | 70 | |
3536720488 | Logistic function | D: (-∞,+∞) R: (0, 1) | 71 | |
3536720489 | cos(π/6) | √3/2 | 72 | |
3536720490 | cos(π/4) | √2/2 | 73 | |
3536720491 | cos(π/3) | 1/2 | 74 | |
3536720492 | cos(π/2) | 0 | 75 | |
3536720493 | cos(2π/3) | −1/2 | 76 | |
3536720494 | cos(3π/4) | −√2/2 | 77 | |
3536720495 | cos(5π/6) | −√3/2 | 78 | |
3536720496 | cos(π) | −1 | 79 | |
3536720497 | cos(7π/6) | −√3/2 | 80 | |
3536720498 | cos(5π/4) | −√2/2 | 81 | |
3536720499 | cos(4π/3) | −1/2 | 82 | |
3536720500 | cos(3π/2) | 0 | 83 | |
3536720501 | cos(5π/3) | 1/2 | 84 | |
3536720502 | cos(7π/4) | √2/2 | 85 | |
3536720503 | cos(11π/6) | √3/2 | 86 | |
3536720504 | cos(2π) | 1 | 87 | |
3536720505 | sin(π/6) | 1/2 | 88 | |
3536720506 | sin(π/4) | √2/2 | 89 | |
3536720507 | sin(π/3) | √3/2 | 90 | |
3536720508 | sin(π/2) | 1 | 91 | |
3536720509 | sin(2π/3) | √3/2 | 92 | |
3536720510 | sin(3π/4) | √2/2 | 93 | |
3536720511 | sin(5π/6) | 1/2 | 94 | |
3536720512 | sin(π) | 0 | 95 | |
3536720513 | sin(7π/6) | −1/2 | 96 | |
3536720514 | sin(5π/4) | −√2/2 | 97 | |
3536720515 | sin(4π/3) | −√3/2 | 98 | |
3536720516 | sin(3π/2) | −1 | 99 | |
3536720517 | sin(5π/3) | −√3/2 | 100 | |
3536720518 | sin(7π/4) | −√2/2 | 101 | |
3536720519 | sin(11π/6) | −1/2 | 102 | |
3536720520 | sin(2π) | 0 | 103 | |
3536720521 | f(x) = e^(x-2) | Asymptote: y=0 Domain: (-∞, ∞) | 104 | |
3536720522 | f(x)=ln(x-2) | Asymptote: x=2 Domain: (2, ∞) | 105 | |
3536720523 | f(x)=ln(-x) | Asymptote: x=0 Domain: (-∞, 0) | 106 | |
3536720524 | f(x)=e^(x+2) | Asymptote: y=0 Domain: (-∞, ∞) | 107 | |
3536720525 | f(x)= -2+lnx | Asymptote: x=0 Domain: (0, ∞) | 108 | |
3536720526 | f(x)=-lnx | Asymptote: x=0 Domain: (0, ∞) | 109 | |
3536720527 | f(x) = e^(x) +2 | Asymptote: y=2 Domain: (-∞, ∞) | 110 | |
3536720528 | f(x)=ln(x+2) | Asymptote: x=-2 Domain: (-2, ∞) | 111 | |
3536720529 | What does the graph y = sin(x) look like? | 112 | ||
3536720530 | What does the graph y = cos(x) look like? | 113 | ||
3536720531 | What does the graph y = tan(x) look like? | 114 | ||
3536720532 | What does the graph y = csc(x) look like? | 115 | ||
3536720533 | What does the graph y = sec(x) look like? | 116 | ||
3536720534 | What does the graph y = cot(x) look like? | 117 | ||
3536720535 | d/dx[e^x]= | e^x | 118 | |
3536720536 | d/dx[a^x]= | a^x*lna | 119 | |
3536720537 | d/dx[e^g(x)]= | g'(x)e^g(x) | 120 | |
3536720538 | d/dx[a^g(x)]= | g'(x)a^g(x)lna | 121 | |
3536720539 | d/dx[cos⁻¹x]= | -1/√(1-x^2) | 122 | |
3536720540 | d/dx[sin⁻¹x]= | 1/√(1-x^2) | 123 | |
3536720541 | d/dx[tan⁻¹x]= | 1/(1+x^2) | 124 | |
3536720542 | d/dx[tanx]= | sec²x | 125 | |
3536720543 | d/dx[secx]= | secxtanx | 126 | |
3536720544 | d/dx[cscx]= | -cscxcotx | 127 | |
3536720545 | d/dx[cotx]= | -csc²x | 128 | |
3536720546 | ∫e^xdx= | e^x+C | 129 | |
3536720547 | ∫a^xdx= | (a^x)/lna+C | 130 | |
3536720548 | ∫1/xdx= | ln|x|+C | 131 | |
3536720549 | ∫1/(1+x^2)dx= | tan⁻¹x+C | 132 | |
3536720550 | ∫1/(a^2+x^2)dx= | (1/a)(tan⁻¹(x/a)+C | 133 | |
3536720551 | ∫1/√(1-x^2)dx= | sin⁻¹x+C | 134 | |
3536720552 | ∫tanxdx= | ln|secx|+C | 135 | |
3536720553 | Trig Identity: 1= | cos²x+sin²x | 136 | |
3536720554 | Trig Identity: sec²x= | tan²x+1 | 137 | |
3536720555 | Trig Identity: cos²x= | ½(1+cos(2x)) | 138 | |
3536720556 | Trig Identity: sin²x= | ½(1-cos(2x)) | 139 | |
3536720557 | Trig Identity: sin(2x)= | 2sinxcosx | 140 | |
3536720558 | Trig Identity: cos(2x)= | 1-2sin²x = 2cos²x-1 | 141 | |
3536720559 | Integration by Parts: Choice of u | I = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x | 142 | |
3536720560 | ∫secxdx= | ln|secx+tanx|+C | 143 | |
3536720561 | What does the graph y = sin(x) look like? | 144 | ||
3536720562 | What does the graph y = cos(x) look like? | 145 | ||
3536720563 | What does the graph y = tan(x) look like? | 146 | ||
3536720564 | What does the graph y = csc(x) look like? | 147 | ||
3536720565 | What does the graph y = sec(x) look like? | 148 | ||
3536720566 | What does the graph y = cot(x) look like? | 149 | ||
3536720567 | d/dx[e^x]= | e^x | 150 | |
3536720568 | d/dx[a^x]= | a^x*lna | 151 | |
3536720569 | d/dx[e^g(x)]= | g'(x)e^g(x) | 152 | |
3536720570 | d/dx[a^g(x)]= | g'(x)a^g(x)lna | 153 | |
3536720571 | d/dx[cos⁻¹x]= | -1/√(1-x^2) | 154 | |
3536720572 | d/dx[sin⁻¹x]= | 1/√(1-x^2) | 155 | |
3536720573 | d/dx[tan⁻¹x]= | 1/(1+x^2) | 156 | |
3536720574 | d/dx[tanx]= | sec²x | 157 | |
3536720575 | d/dx[secx]= | secxtanx | 158 | |
3536720576 | d/dx[cscx]= | -cscxcotx | 159 | |
3536720577 | d/dx[cotx]= | -csc²x | 160 | |
3536720578 | ∫e^xdx= | e^x+C | 161 | |
3536720579 | ∫a^xdx= | (a^x)/lna+C | 162 | |
3536720580 | ∫1/xdx= | ln|x|+C | 163 | |
3536720581 | ∫1/(1+x^2)dx= | tan⁻¹x+C | 164 | |
3536720582 | ∫1/(a^2+x^2)dx= | (1/a)(tan⁻¹(x/a)+C | 165 | |
3536720583 | ∫1/√(1-x^2)dx= | sin⁻¹x+C | 166 | |
3536720584 | ∫tanxdx= | ln|secx|+C | 167 | |
3536720585 | Trig Identity: 1= | cos²x+sin²x | 168 | |
3536720586 | Trig Identity: sec²x= | tan²x+1 | 169 | |
3536720587 | Trig Identity: cos²x= | ½(1+cos(2x)) | 170 | |
3536720588 | Trig Identity: sin²x= | ½(1-cos(2x)) | 171 | |
3536720589 | Trig Identity: sin(2x)= | 2sinxcosx | 172 | |
3536720590 | Trig Identity: cos(2x)= | 1-2sin²x = 2cos²x-1 | 173 | |
3536720591 | Integration by Parts: Choice of u | I = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x | 174 | |
3536720592 | ∫secxdx= | ln|secx+tanx|+C | 175 |