AP Physics Flashcards
Terms : Hide Images [1]
| 6852394689 | s | Speed, scaler | 0 | |
| 6852394690 | v | Velocity, vector | 1 | |
| 6852394691 | t | Time, scaler | 2 | |
| 6852394692 | m | Mass, Scaler | 3 | |
| 6852394693 | a | acceleration, vector | 4 | |
| 6852394694 | d | distance, scaler | 5 | |
| 6852394695 | Δx, Δy, Δp | displacement, vector | 6 | |
| 6852394696 | scaler | The variable has no direction (direction doesn't matter) | 7 | |
| 6852394697 | vector | The variable has direction and magnitude (direction matters) | 8 | |
| 6852394698 | Speed formula | s = total distance/total time | 9 | |
| 6852394699 | Velocity Formula | v = displacement/time | 10 | |
| 6852394700 | Kinematic Equation 1 | finalV = initialV + at | 11 | |
| 6852394701 | Kinematic Equation 2 | finalX = initialX + initialVt + 0.5atsquared | 12 | |
| 6852394702 | Kinematic Equation 3 | finalVsquared = initialVsquared +2a(finalX - initialX) | 13 | |
| 6852394703 | Acceleration of Gravity | 9.81 m/s | 14 | |
| 6852394704 | The slope of a position vs. time graph is | The velocity on a velocity vs. time graph | 15 | |
| 6852394705 | The slope of a velocity vs. time graph is | The acceleration on an acceleration vs. time graph | 16 | |
| 6852394706 | Newton's 1st Law | An object stays at rest and an object in motion stays in motion unless acted upon by an unbalanced force. (The law of Inertia) | 17 | |
| 6852394707 | Inertia | The property that an object doesn't want to move if not in motion and an object in motion doesn't want to stop | 18 | |
| 6852394708 | Centripetal Force | A force going towards the center | 19 | |
| 6852394709 | Translational motion | Moving horizontally | 20 | |
| 6852394710 | Newton's 2nd Law | F = ma (the larger the m, the smaller the a) (the smaller the m, the larger the a) | 21 | |
| 6852394711 | Newton's 3rd Law | Every action has an equal (applies direction) and opposite (applies magnitude) reaction. | 22 | |
| 6852394712 | 1N (Newton) = | 1kgm/s squared (kilogram meter per second squared) | 23 | |
| 6852394713 | Incline Plane: F = ma = | Wsinθ | 24 | |
| 6852394714 | force of friction (f) = | μN(normal force) | 25 | |
| 6852394715 | W(work) = | F · Δx | 26 | |
| 6852394716 | To do work is | to give/take energy (give is positive work) (take is negative work) | 27 | |
| 6852394717 | Dot Product | a · b = |a| × |b| × cosθ | 28 | |
| 6852394718 | 1J(joule) = | 1Nm (Newton meter) | 29 | |
| 6852394719 | Power (P) | how much or rate at which work is done over time | 30 | |
| 6852394720 | P = | W/t | 31 | |
| 6852394721 | Watts (W) = | J(joule)/s (unit of power) | 32 | |
| 6852394722 | KE (kinetic energy) = | 0.5mv squared | 33 | |
| 6852394723 | Ugrav (potential energy) = | mgh (mass x gravity x height) | 34 | |
| 6852394724 | Law of Conservation of Energy | Energy can neither be created nor destroyed | 35 | |
| 6852394725 | 1hp (horse power) = | 746 W (watts) | 36 | |
| 6852394726 | Fc (centripetal Force) = | mv squared/r = (m4πsquaredr)/ Tsquared (period squared) | 37 | |
| 6852394727 | ac (centripetal acceleration) = | vsquared/r = 4πsquaredr/Tsquared(period squared) | 38 | |
| 6852394728 | Fg (Force of Gravity) = | Gm1m2/rsquared | 39 | |
| 6852394729 | G | 6.67E-11 | 40 | |
| 6852394730 | p(momentum) = | mv | 41 | |
| 6852394731 | Law of conservation of momentum | total p initial = total p final | 42 | |
| 6852394732 | When 2 or more objects are moving use | Momentum | 43 | |
| 6852394733 | When only 1 object is moving use | Energies | 44 | |
| 6852394734 | Impulse | J = Δp = FΔt | 45 | |
| 6852394735 | Change in momentum | Impulse | 46 | |
| 6852394736 | Elastic Collision | Happens when KE is conserved (no energy is lost) | 47 | |
| 6852394737 | In-elastic Collision | Happens when KE is not conserved (energy is lost) | 48 | |
| 6852394738 | Perfectly In-elastic Collision | 2 objects collide and become 1 object (the objects stick together) | 49 | |
| 6852394739 | In momentum: V1final = | V1initial(m1 - m2/m1 + m2) | 50 | |
| 6852394740 | In momentum: V1initial - V2initial = | -(V2final - V1final) | 51 | |
| 6852394741 | L (rotational momentum) = | Iω (kgmsquared/sec) | 52 | |
| 6852394742 | Rotational Displacement | θ (radians) | 53 | |
| 6852394743 | ω (velocity) = | θ/t (rad/sec) | 54 | |
| 6852394744 | α (rotational acceleration) = | Δω/t (rad/secsquared) | 55 | |
| 6852394745 | Rotational Inertia | I(kgmsquared) | 56 | |
| 6852394746 | τ (torque) = | Iα (Nm) | 57 | |
| 6852394747 | KE rotational = | 0.5Iωsquared (J) | 58 | |
| 6852394748 | W rotational = | τΔθ (J) | 59 | |
| 6852394749 | Displacement Conversion | Δx = θr | 60 | |
| 6852394750 | Velocity Conversion | v = ωr | 61 | |
| 6852394751 | Acceleration Conversion | a = αr | 62 | |
| 6852394752 | Force Conversion | τ = Frsinθ | 63 | |
| 6852394753 | Rotational Kinematic Equation 1 | ωfinal = ωinitial + αt | 64 | |
| 6852394754 | Rotational Kinematic Equation 2 | θfinal = θinitial + ωinitialt + 0.5αtsquared | 65 | |
| 6852394755 | Rotational Kinematic Equation 3 | ωfinalsquared = ωinitialsquared + 2αΔθ | 66 | |
| 6852394756 | The closer the mass is to the rotational axis | the smaller the inertia and the faster the object moves | 67 | |
| 6852394757 | Momentum must be conserved | numerically and in direction | 68 | |
| 6852394758 | Closed Reflection | The wave bounces back on the opposite side | 69 | |
| 6852394759 | Open Reflection | The wave bounces back on the same side | 70 | |
| 6852394760 | Wave | A transfer of energy through material | 71 | |
| 6852394761 | Transverse Wave | The material moves perpendicular to the direction of the wave | ![]() | 72 |
| 6852394762 | Longitudinal Wave | The medium moves parallel to the motion of the wave | ![]() | 73 |
| 6852394763 | Wave Amplitude | Height of wave from the midline | 74 | |
| 6852394764 | Wave Crest | The top of a wave | 75 | |
| 6852394765 | Wave Trough | The bottom of a wave | 76 | |
| 6852394766 | Wave Length (λ) | The distance of one crest or trough to another | 77 | |
| 6852394767 | Period (T) | The time it takes for one wave to pass through a certain point | 78 | |
| 6852394768 | Frequency (f) | How many waves pass a point per second (Ht) | 79 | |
| 6852394769 | Period and Frequency are | Inverses | 80 | |
| 6852394770 | Visible Light Range | 300 nm to 700 nm | 81 | |
| 6852394771 | Range of Hearing | 20 Hz to 20,000 Hz | 82 | |
| 6852394772 | fbeats = | f1 - f2 | 83 | |
| 6852394773 | V (of a wave) = | λf | 84 | |
| 6852394774 | Vsound = | 331 + 0.6(Temperature in degrees C) | 85 | |
| 6852394775 | Intensity = | W/4πrsquared | 86 | |
| 6852394776 | As radius increases | the intensity gets smaller because the sound spreads out more | 87 | |
| 6852394777 | Threshold of Intensity | 1E-12 w/msquared (I0) | 88 | |
| 6852394778 | Threshold of Pain | 1 w/msquared | 89 | |
| 6852394779 | The sound intensity level (based off of human ears) | Decibel System β = 10log(I/I0) | 90 | |
| 6852394780 | Decibel changes by | Addition (10+10+10) | 91 | |
| 6852394781 | Intensity changes by | Multiplication (10 x 10 x 10) | 92 | |
| 6852394782 | When 10 decibels are added the intensity | increases by a factor of 10 | 93 | |
| 6852394783 | When comparing intensities the louder intensity goes | on the top of the equation | 94 | |
| 6852394784 | The observed wave has a change/shift in frequency because of the relative speed between the source and the observer | The Doppler Effect | 95 | |
| 6852394785 | When objects move towards each other λ , f , and the light is . | λ decreases, f increases, blueshift | 96 | |
| 6852394786 | When objects move away from each other λ , f , and the light is . | λ increases, f decreases, redshift | 97 | |
| 6852394787 | fo = | fs (v±vo/v±vs) (o - observer, s - source) | 98 | |
| 6852394788 | A spot of no motion | Node | 99 | |
| 6852394789 | A spot with the most motion | Anti-node | 100 | |
| 6852394790 | The natural frequency of something | Residence | 101 | |
| 6852394791 | Residence of string instruments | Chordophones | 102 | |
| 6852394792 | Chordophones have nodes on | each end | 103 | |
| 6852394793 | Chordophone: L = | nλ/2 | 104 | |
| 6852394794 | Chordophone: λ = | 2L/2 | 105 | |
| 6852394795 | Chordophone: fn = | nV/2L | 106 | |
| 6852394796 | Resonance of wind instruments | Aerophones | 107 | |
| 6852394797 | An aerophone with anti-nodes on each end | Open Pipes | 108 | |
| 6852394798 | An aerophone with an anti-node on one end | Closed Pipe | 109 | |
| 6852394799 | Open Pipe: L = | nλ/2 | 110 | |
| 6852394800 | Open Pipe: fn = | nV/2L | 111 | |
| 6852394801 | Closed Pipe: L = | (2n-1)λ/4 | 112 | |
| 6852394802 | Closed Pipe: fn = | (2n - 1)V/4L | 113 | |
| 6852394803 | Coulomb | One unit of electric charge (C) | 114 | |
| 6852394804 | e = | 1.602E-19 C | 115 | |
| 6852394805 | Coulomb's Law | kq1q2/rsquared | 116 | |
| 6852394806 | Coulomb's Constant (k) | 9E9 Nmsquared/Csquared | 117 | |
| 6852394807 | The push that makes electrons flow | Voltage (V) | 118 | |
| 6852394808 | R (resistance) = | pL/A (resistivity x length / area) | 119 | |
| 6852394809 | The flow rate or flow of the charge | Current(amp) I | 120 | |
| 6852394810 | 1 A = | 1 C/s | 121 | |
| 6852394811 | How easy or difficult it is for the current to flow through something | Resistance (Ω) | 122 | |
| 6852394812 | ohm's Law | V = IR | 123 | |
| 6852394813 | Series Circuit | As # of resistors increases, the V experienced by each decreases | ![]() | 124 |
| 6852394814 | Parallel Circuit | A circuit with many parts | ![]() | 125 |
| 6852394815 | I is constant in a | Series Circuit | 126 | |
| 6852394816 | V is constant in a | Parallel Circuit | 127 | |
| 6852394817 | Series: Rtotal = | R1 + R2 + R3 | 128 | |
| 6852394818 | Series: ItotalRtotal = | I1R1 + I2R2 | 129 | |
| 6852394819 | Series: Vtotal = | V1 + V2 | 130 | |
| 6852394820 | Parallel: 1/Rtotal = | 1/R1 + 1/R2 | 131 | |
| 6852394821 | Parallel: Itotal = | I1 + I2 | 132 | |
| 6852394822 | Parallel: Vtotal/Rtotal = | V1/R1 +V2/R2 | 133 | |
| 6852394823 | Period of Pendulum: T = | 2π√ L/g | 134 | |
| 6852394824 | Potential Energy of a Spring: Uelas = | 0.5kxsquared | 135 | |
| 6852394825 | Mechanical Energy is | Potential energy and kinetic energy | 136 |




