CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > AP Calculus AB Review Flashcards

AP Calculus AB Review Flashcards

Terms : Hide Images [1]
9482158448Limit Definition of Derivativelimit (as h approaches 0)= F(x+h)-F(x)/h0
9482158449Alternate Definition of Derivativelimit (as x approaches a number c)= f(x)-f(c)/x-c x≠c1
9482158450limit as x approaches 0: sinx/x12
9482158451limit as x approaches 0: 1-cosx/x03
9482158452Continuity RuleA function is continuous at x = c if: (1) f(c) is defined (2) lim f(x) (x goes to c) exits (3) lim f(x) (x goes to c) = f(c)4
9482158453Basic Derivativef(x^n)= nx^(n-1)5
9482158454d/dx(sinx)cosx6
9482158455d/dx(cosx)-sinx7
9482158456d/dx(tanx)sec²x8
9482158457d/dx(cotx)-csc²x9
9482158458d/dx(secx)secxtanx10
9482158459d/dx(cscx)-cscxcotx11
9482158460d/dx(lnu)u'/u12
9482158461d/dx(e^u)e^u(u')13
9482158462d/dx(a^u)a^u(lna)(u')14
9482158463Chain rule of f(x)^nn(f(x)^(n-1))f'(x)15
9482158464Product rule of f(x)g(x)f'(x)g(x)+g'(x)f(x)16
9482158465Quotient rule of f(x)/g(x)g(x)f'(x)-f(x)g'(x)/g(x)²17
9482158466Intermediate Value Theoremif f(x) is continuous on [a,b], then there will be a point x=c that lies in between [a,b] such that f(c) is between f(a) and f(b)18
9482158467Extreme Value Theoremif f(x) is continuous on [a,b], then f(x) has an absolute max or min on the interval19
9482158468Rolle's Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), and if f(a)=f(b), then there is at least one point (x=c) on (a,b) [DON'T INCLUDE END POINTS] where f'(c)=020
9482158469Mean Value Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), there is at least one point (x=c) where f'(c)= f(b)-f(a)/b-a21
9482158470If f'(x)=0there is a POSSIBLE max or min on f(x) [number line test of f'(x)]22
9482158471If f'(x)>0f(x) is increasing23
9482158472If f'(x)<0f(x) is decreasing24
9482158473If x=a is a critical valuef'(a)=0 or f'(a)=DNE25
9482158474If f''(x)>0f(x) is concave up & f'(x) is increasing26
9482158475If f''(x)<0f(x) is concave down & f'(x) is decreasing27
9482158476p(t), x(t), s(t)means position function28
9482158477p'(t)v(t)= velocity29
9482158478p''(t) or v'(t)a(t)= acceleration30
9482158479v(t)=0p(t) is at rest or changing direction31
9482158480v(t)>0p(t) is moving right32
9482158481v(t)<0p(t) is moving left33
9482158482a(t)=0v(t) not changing34
9482158483a(t)>0v(t) increasing35
9482158484a(t)<0v(t) decreasing36
9482158485v(t) and a(t) has same signsspeed of particle increasing37
9482158486v(t) and a(t) has different signsspeed of particle decreasing38
9482158487∫(x^n)dxx^(n+1)∕(n+1) +C39
9482158488∫(1/x)dxln|x|+C40
9482158489∫(e^kx)dxekx/k +C41
9482158490∫sinx dx-cosx+C42
9482158491∫cosx dxsinx+C43
9482158492∫sec²x dxtanx+C44
9482158493∫csc²x dx-cotx+C45
9482158494∫secxtanx dxsecx+C46
9482158495∫cscxcotx-cscx+C47
9482158496∫k dx [k IS A CONSTANT]kx+C48
94821584971st fundamental theorem of calculus(bounded by a to b) ∫f(x)dx= F(b)-F(a)49
94821584982nd fundamental theorem(bounded by 1 to x) d/dx[∫f(t)dt]= f(x)(x')50
9482158499average value(1/(b-a))[∫f(x)dx] [BOUNDED BY A TO B]51
9482158500Area between curvesA=∫f(x)-g(x) dx52
9482158501Volume (DISK)V=π∫f(x)²dx53
9482158502Volume (WASHER)V=π∫f(x)²-g(x)²dx54
9482158503∫f(x)dx [BOUNDS ARE SAME]055
9482158504Displacement of particle∫v(t)dt56
9482158505total distance of particle∫|v(t)|dt57
9482158506position of particle at specific pointp(x)= initial condition + ∫v(t)dt (bounds are initial condition and p(x))58
9482158507derivative of exponential growth equation: P(t)=Pe^ktdP/dt=kP59
9482158508Cross section for volume: square [A=s²]v=∫[f(x)-g(x)]²dx60
9482158509Cross section for volume: isosceles triangle [A=1/2s²]v= 1/2∫[f(x)-g(x)]²dx61
9482158510Cross section for volume: equilateral triangle [A=√3/4s²]v= √3/4∫[f(x)-g(x)]²dx62
9482158511Cross section for volume: semicircle [A=1/2πs²]v= 1/2π∫[f(x)-g(x)]²dx63
9482158512d/dx(sin⁻¹u)u'/√(1-u²)64
9482158513d/dx(cos⁻¹u)-u'/√(1-u²)65
9482158514d/dx(tan⁻¹u)u'/(1+u²)66
9482158515d/dx(cot⁻¹u)-u'/(1+u²)67
9482158516d/dx(sec⁻¹u)u'/|u|√(u²-1)68
9482158517d/dx(csc⁻¹u)u'/|u|√(u²-1)69
9482158518∫du/√(a²-u²)(sin⁻¹u/a)+C70
9482158519∫du/(a²+u²)(1/a)(tan⁻¹u/a)+C71
9482158520∫du/|u|√(u²-a²)(1/a)(sec⁻¹u/a)+C72
9554294021End Behavior Modelg(x) is a right EBM for f(x) if lim (x goes to pos infinity) f(x)/g(x) = 1 g(x) is a left EBM for f(x) if lim (x goes to neg infinity) f(x)/g(x) = 173
9554302018Horizontal AsymptotesIf lim f(x) (x goes to pos/neg infinity) = L then y = L is a HA, describes the end behavior of a function (a HA can be crossed)74
9554314949Rules for lim f(x) (x goes to pos/neg infinity)(1) when lim f(x) (x goes to pos infinity) and degree of x is the same, the ratio of the coefficients is the limit (2) "" when degree in denominator is greater than the degree in numerator, limit = 0 (3) "" when degree in numerator is greater than the degree in denominator, limit DNE but can find end behavior model75
9554322872Vertical Asymptotesy = f(x) has a VA at x = c if lim f(x) (x goes to c from the right) = pos/neg infinity or lim f(x) (x goes to c from the left) = pos/neg infinity76
9554344949Types of Discontinuity(1) Removable discontinuity (2) Jump discontinuity (piecewise or absolute value function) (3) Infinite discontinuity (asymptote)77
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/ap_calculus_ab_review_flashcards_0

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/