AP Calculus Exam Review Flashcards
Terms : Hide Images [1]
| 9845129170 | d/dx [ f(x) * g(x) ] | f(x)*g'(x) + g(x)*f'(x) | 0 | |
| 9845161145 | d/dx [ f(x) / g(x) ] | [ g(x) * f'(x) - f(x)* g'(x) ] / [ g(x) ]^2 | ![]() | 1 |
| 9845163022 | d/dx f[ g(x) ] | f'[ g(x) ] * g'(x) | 2 | |
| 9845173145 | d/dx sin x | cos x | 3 | |
| 9845173875 | d/dx cos x | -sin x | 4 | |
| 9845174721 | d/dx tan x | sec^2(x) | ![]() | 5 |
| 9845176340 | d/dx cot x | -csc^2(x) | 6 | |
| 9845179908 | d/dx sec x | sec x tan x | 7 | |
| 9845181052 | d/dx csc x | -csc x cot x | 8 | |
| 9845183167 | d/dx e^x | e^x | 9 | |
| 9845184498 | d/dx ln x | 1/x | 10 | |
| 9845190618 | L'Hopital's Rule | ![]() | 11 | |
| 9845192678 | Continuity | Limit from the left = Limit from the right = Function value | 12 | |
| 9845205842 | Critical Numbers | Occur where f'(x) = 0 or f'(x) DNE (denominator = 0) | 13 | |
| 9845212914 | POSSIBLE Points of Inflection | Occur where f''(x) = 0 or f''(x) DNE (denominator = 0) | 14 | |
| 9845213959 | Points of Inflection | Occur where f''(x) has a sign change | 15 | |
| 9845219022 | Extreme Value Theorem | Absolute/Global extrema on a closed interval must occur either at a critical number or at endpoints | 16 | |
| 9845225127 | Relative/Local Maximum (First Derivative Test) | Occurs where f' changes from positive to negative | 17 | |
| 9845227660 | Relative/Local Minimum (First Derivative Test) | Occurs where f' changes from negative to positive | 18 | |
| 9845232720 | Relative/Local Maximum (Second Derivative Test) | Occurs when f''(critical number) < 0 | 19 | |
| 9845241819 | Relative/Local Minimum (Second Derivative Test) | Occurs when f''(critical number) > 0 | 20 | |
| 9845245263 | Local Linear Approximation | y - y1 = m ( x - x1) (Equation of a Tangent Line) | 21 | |
| 9845249171 | Fundamental Theorem of Calculus | ![]() | 22 | |
| 9845254381 | Second Fundamental Theorem of Calculus | ![]() | 23 | |
| 9845263310 | Mean Value Theorem | ![]() | 24 | |
| 9845269381 | Average Value of a Function | ![]() | 25 | |
| 9845272308 | Intermediate Value Theorem | ![]() | 26 |








