CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > AP Calculus AB Review Flashcards

AP Calculus AB Review Flashcards

Terms : Hide Images [1]
9832895998Limit Definition of Derivativelimit (as h approaches 0)= F(x+h)-F(x)/h0
9832895999Alternate Definition of Derivativelimit (as x approaches a number c)= f(x)-f(c)/x-c x≠c1
9832896000limit as x approaches 0: sinx/x12
9832896001limit as x approaches 0: 1-cosx/x03
9832896002Continuity RuleIf the limit exists (aka left limit and right limit are equal), and the limit equals the function at that point.4
9832896003Basic Derivativef(x^n)= nX^(n-1)5
9832896004d/dx(sinx)cosx6
9832896005d/dx(cosx)-sinx7
9832896006d/dx(tanx)sec²x8
9832896007d/dx(cotx)-csc²x9
9832896008d/dx(secx)secxtanx10
9832896009d/dx(cscx)-cscxcotx11
9832896010d/dx(lnu)u'/u12
9832896011d/dx(e^u)e^u(u')13
9832896012d/dx(a^u)a^u(lna)(u')14
9832896013Chain rule of f(x)^nnf(x)f'(x)15
9832896014Product rule of f(x)g(x)f'(x)g(x)+g'(x)f(x)16
9832896015Quotient rule of f(x)/g(x)g(x)f'(x)-f(x)g'(x)/g(x)²17
9832896016Intermediate Value Theoremif f(x) is continuous on [a,b], then there will be a point x=c that lies in between [a,b]18
9832896017Extreme Value Theoremif f(x) is continuous on [a,b], then f(x) has an absolute max or min on the interval19
9832896018Rolle's Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), and if f(a)=f(b), then there is at least one point (x=c) on (a,b) [DON'T INCLUDE END POINTS] where f'(c)=020
9832896019Mean Value Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), there is at least one point (x=c) where f'(c)= F(b)-F(a)/b-a21
9832896020If f'(x)=0there is a max or min on f(x) [number line test]22
9832896021If f'(x)>0f(x) is increasing23
9832896022If f'(x)<0f(x) is decreasing24
9832896023If f''(x)=0f(x) has a point of inflection & f'(x) has a max or min25
9832896024If f''(x)>0f(x) is concave up & f'(x) is increasing26
9832896025If f''(x)<0f(x) is concave down & f'(x) is decreasing27
9832896026p(t), x(t), s(t)means position function28
9832896027p'(t)v(t)= velocity29
9832896028p''(t) or v'(t)a(t)= acceleration30
9832896029v(t)=0p(t) is at rest or changing direction31
9832896030v(t)>0p(t) is moving right32
9832896031v(t)<0p(t) is moving left33
9832896032a(t)=0v(t) not changing34
9832896033a(t)>0v(t) increasing35
9832896034a(t)<0v(t) decreasing36
9832896035v(t) and a(t) has same signsspeed of particle increasing37
9832896036v(t) and a(t) has different signsspeed of particle decreasing38
9832896037∫(x^n)dxx^(n+1)∕(n+1) +C39
9832896038∫(1/x)dxln|x|+C40
9832896039∫(e^kx)dxekx/k +C41
9832896040∫sinx dx-cosx+C42
9832896041∫cosx dxsinx+C43
9832896042∫sec²x dxtanx+C44
9832896043∫csc²x dx-cotx+C45
9832896044∫secxtanx dxsecx+C46
9832896045∫cscxcotx-cscx+C47
9832896046∫k dx [k IS A CONSTANT]kx+C48
98328960471st fundamental theorem of calculus(bounded by a to b) ∫f(x)dx= F(b)-F(a)49
98328960482nd fundamental theorem(bounded by 1 to x) d/dx[∫f(t)dt]= f(x)(x')50
9832896049average value(1/(b-a))[∫f(x)dx] [BOUNDED BY A TO B]51
9832896050Area between curvesA=∫f(x)-g(x) dx52
9832896051Volume (DISK)V=π∫f(x)²dx53
9832896052Volume (WASHER)V=π∫f(x)²-g(x)²dx54
9832896053∫f(x)dx [BOUNDS ARE SAME]055
9832896054Displacement of particle∫v(t)dt56
9832896055total distance of particle∫|v(t)|dt57
9832896056position of particle at specific pointp(x)= initial condition + ∫v(t)dt (bounds are initial condition and p(x))58
9832896057derivative of exponential growth equation: P(t)=Pe^ktdP/dt=kP59
9832896058Cross section for volume: square [A=s²]v=∫[f(x)-g(x)]²dx60
9832896059Cross section for volume: isosceles triangle [A=1/2s²]v= 1/2∫[f(x)-g(x)]²dx61
9832896060Cross section for volume: equilateral triangle [A=√3/4s²]v= √3/4∫[f(x)-g(x)]²dx62
9832896061Cross section for volume: semicircle [A=1/2πs²]v= 1/2π∫[f(x)-g(x)]²dx63
9832896062d/dx(sin⁻¹u)u'/√(1-u²)64
9832896063d/dx(cos⁻¹u)-u'/√(1-u²)65
9832896064d/dx(tan⁻¹u)u'/(1+u²)66
9832896065d/dx(cot⁻¹u)-u'/(1+u²)67
9832896066d/dx(sec⁻¹u)u'/|u|√(u²-1)68
9832896067d/dx(csc⁻¹u)u'/|u|√(u²-1)69
9832896068∫du/√(a²-u²)(sin⁻¹u/a)+C70
9832896069∫du/(a²+u²)(1/a)(tan⁻¹u/a)+C71
9832896070∫du/|u|√(u²-a²)(1/a)(sec⁻¹u/a)+C72
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/ap_calculus_ab_review_flashcards_3

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/