AP Calculus BC Formulas Flashcards
Terms : Hide Images [1]
5626375629 | Mean Value Theorem | If f(x) is *continuous* on interval [a,b] and *differentiable* on interval (a,b), then there is a number a < c < b such that... | ![]() | 0 |
5626414210 | Derivative of sinx | cosx | 1 | |
5626414211 | Derivative of cosx | -sinx | 2 | |
5626417122 | Derivative of tanx | sec^2x | 3 | |
5626425388 | Derivative of cscx | -cscx * cotx | 4 | |
5626430523 | Derivative of secx | secx * tanx | 5 | |
5626434627 | Derivative of cotx | -csc^2x | 6 | |
5626440942 | Derivative of arcsinx | ![]() | 7 | |
5626444434 | Derivative of arccosx | ![]() | 8 | |
5626448033 | Derivative of arctanx | ![]() | 9 | |
5626451810 | Derivative of arcsecx | ![]() | 10 | |
5626453519 | Derivative of arccscx | ![]() | 11 | |
5626456741 | Derivative of arccotx | ![]() | 12 | |
5626465028 | Derivative of a^x | a^x * ln(a) | 13 | |
5626468184 | Derivative of e^x | e^x | 14 | |
5626472659 | Derivative of log a (x) | ![]() | 15 | |
5626486717 | Derivative of lnx | 1/x | 16 | |
5626490596 | Fundamental Theorem of Calculus Part 1 | ![]() | 17 | |
5626494007 | Fundamental Theorem of Calculus Part 2 | ![]() | 18 | |
5626520775 | ∫ lnu du | u*ln(u) - u + C | 19 |