CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > AP Calculus AB Review Flashcards

AP Calculus AB Review Flashcards

Terms : Hide Images [1]
9686225166Limit Definition of Derivativelimit (as h approaches 0)= F(x+h)-F(x)/h0
9686225167Alternate Definition of Derivativelimit (as x approaches a number c)= f(x)-f(c)/x-c x≠c1
9686225168limit as x approaches 0: sinx/x12
9686225169limit as x approaches 0: 1-cosx/x03
9686225170Continuity RuleIf the limit exists (aka left limit and right limit are equal), and the limit equals the function at that point.4
9686225171Basic Derivativef(x^n)= nX^(n-1)5
9686225172d/dx(sinx)cosx6
9686225173d/dx(cosx)-sinx7
9686225174d/dx(tanx)sec²x8
9686225175d/dx(cotx)-csc²x9
9686225176d/dx(secx)secxtanx10
9686225177d/dx(cscx)-cscxcotx11
9686225178d/dx(lnu)u'/u12
9686225179d/dx(e^u)e^u(u')13
9686225180d/dx(a^u)a^u(lna)(u')14
9686225181Chain rule of f(x)^nnf(x)f'(x)15
9686225182Product rule of f(x)g(x)f'(x)g(x)+g'(x)f(x)16
9686225183Quotient rule of f(x)/g(x)g(x)f'(x)-f(x)g'(x)/g(x)²17
9686225184Intermediate Value Theoremif f(x) is continuous on [a,b], then there will be a point x=c that lies in between [a,b]18
9686225185Extreme Value Theoremif f(x) is continuous on [a,b], then f(x) has an absolute max or min on the interval19
9686225186Rolle's Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), and if f(a)=f(b), then there is at least one point (x=c) on (a,b) [DON'T INCLUDE END POINTS] where f'(c)=020
9686225187Mean Value Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), there is at least one point (x=c) where f'(c)= F(b)-F(a)/b-a21
9686225188If f'(x)=0there is a max or min on f(x) [number line test]22
9686225189If f'(x)>0f(x) is increasing23
9686225190If f'(x)<0f(x) is decreasing24
9686225191If f''(x)=0f(x) has a point of inflection & f'(x) has a max or min25
9686225192If f''(x)>0f(x) is concave up & f'(x) is increasing26
9686225193If f''(x)<0f(x) is concave down & f'(x) is decreasing27
9686225194p(t), x(t), s(t)means position function28
9686225195p'(t)v(t)= velocity29
9686225196p''(t) or v'(t)a(t)= acceleration30
9686225197v(t)=0p(t) is at rest or changing direction31
9686225198v(t)>0p(t) is moving right32
9686225199v(t)<0p(t) is moving left33
9686225200a(t)=0v(t) not changing34
9686225201a(t)>0v(t) increasing35
9686225202a(t)<0v(t) decreasing36
9686225203v(t) and a(t) has same signsspeed of particle increasing37
9686225204v(t) and a(t) has different signsspeed of particle decreasing38
9686225205∫(x^n)dxx^(n+1)∕(n+1) +C39
9686225206∫(1/x)dxln|x|+C40
9686225207∫(e^kx)dxekx/k +C41
9686225208∫sinx dx-cosx+C42
9686225209∫cosx dxsinx+C43
9686225210∫sec²x dxtanx+C44
9686225211∫csc²x dx-cotx+C45
9686225212∫secxtanx dxsecx+C46
9686225213∫cscxcotx-cscx+C47
9686225214∫k dx [k IS A CONSTANT]kx+C48
96862252151st fundamental theorem of calculus(bounded by a to b) ∫f(x)dx= F(b)-F(a)49
96862252162nd fundamental theorem(bounded by 1 to x) d/dx[∫f(t)dt]= f(x)(x')50
9686225217average value(1/(b-a))[∫f(x)dx] [BOUNDED BY A TO B]51
9686225218Area between curvesA=∫f(x)-g(x) dx52
9686225219Volume (DISK)V=π∫f(x)²dx53
9686225220Volume (WASHER)V=π∫f(x)²-g(x)²dx54
9686225221∫f(x)dx [BOUNDS ARE SAME]055
9686225222Displacement of particle∫v(t)dt56
9686225223total distance of particle∫|v(t)|dt57
9686225224position of particle at specific pointp(x)= initial condition + ∫v(t)dt (bounds are initial condition and p(x))58
9686225225derivative of exponential growth equation: P(t)=Pe^ktdP/dt=kP59
9686225226Cross section for volume: square [A=s²]v=∫[f(x)-g(x)]²dx60
9686225227Cross section for volume: isosceles triangle [A=1/2s²]v= 1/2∫[f(x)-g(x)]²dx61
9686225228Cross section for volume: equilateral triangle [A=√3/4s²]v= √3/4∫[f(x)-g(x)]²dx62
9686225229Cross section for volume: semicircle [A=1/2πs²]v= 1/2π∫[f(x)-g(x)]²dx63
9686225230d/dx(sin⁻¹u)u'/√(1-u²)64
9686225231d/dx(cos⁻¹u)-u'/√(1-u²)65
9686225232d/dx(tan⁻¹u)u'/(1+u²)66
9686225233d/dx(cot⁻¹u)-u'/(1+u²)67
9686225234d/dx(sec⁻¹u)u'/|u|√(u²-1)68
9686225235d/dx(csc⁻¹u)u'/|u|√(u²-1)69
9686225236∫du/√(a²-u²)(sin⁻¹u/a)+C70
9686225237∫du/(a²+u²)(1/a)(tan⁻¹u/a)+C71
9686225238∫du/|u|√(u²-a²)(1/a)(sec⁻¹u/a)+C72
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/ap_calculus_ab_review_flashcards_6

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/