CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > AP Calculus AB Review Flashcards

AP Calculus AB Review Flashcards

Terms : Hide Images [1]
7809675919Limit Definition of Derivativelimit (as h approaches 0)= F(x+h)-F(x)/h0
7809675920Alternate Definition of Derivativelimit (as x approaches a number c)= f(x)-f(c)/x-c x≠c1
7809675921limit as x approaches 0: sinx/x12
7809675922limit as x approaches 0: 1-cosx/x03
7809675923Continuity RuleIf the limit exists (aka left limit and right limit are equal), and the limit equals the function at that point.4
7809675924Basic Derivativef(x^n)= nX^(n-1)5
7809675925d/dx(sinx)cosx6
7809675926d/dx(cosx)-sinx7
7809675927d/dx(tanx)sec²x8
7809675928d/dx(cotx)-csc²x9
7809675929d/dx(secx)secxtanx10
7809675930d/dx(cscx)-cscxcotx11
7809675931d/dx(lnu)u'/u12
7809675932d/dx(e^u)e^u(u')13
7809675933d/dx(a^u)a^u(lna)(u')14
7809675934Chain rule of f(x)^nnf(x)f'(x)15
7809675935Product rule of f(x)g(x)f'(x)g(x)+g'(x)f(x)16
7809675936Quotient rule of f(x)/g(x)g(x)f'(x)-f(x)g'(x)/g(x)²17
7809675937Intermediate Value Theoremif f(x) is continuous on [a,b], then there will be a point x=c that lies in between [a,b]18
7809675938Extreme Value Theoremif f(x) is continuous on [a,b], then f(x) has an absolute max or min on the interval19
7809675939Rolle's Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), and if f(a)=f(b), then there is at least one point (x=c) on (a,b) [DON'T INCLUDE END POINTS] where f'(c)=020
7809675940Mean Value Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), there is at least one point (x=c) where f'(c)= F(b)-F(a)/b-a21
7809675941If f'(x)=0there is a max or min on f(x) [number line test]22
7809675942If f'(x)>0f(x) is increasing23
7809675943If f'(x)<0f(x) is decreasing24
7809675944If f''(x)=0f(x) has a point of inflection & f'(x) has a max or min25
7809675945If f''(x)>0f(x) is concave up & f'(x) is increasing26
7809675946If f''(x)<0f(x) is concave down & f'(x) is decreasing27
7809675947p(t), x(t), s(t)means position function28
7809675948p'(t)v(t)= velocity29
7809675949p''(t) or v'(t)a(t)= acceleration30
7809675950v(t)=0p(t) is at rest or changing direction31
7809675951v(t)>0p(t) is moving right32
7809675952v(t)<0p(t) is moving left33
7809675953a(t)=0v(t) not changing34
7809675954a(t)>0v(t) increasing35
7809675955a(t)<0v(t) decreasing36
7809675956v(t) and a(t) has same signsspeed of particle increasing37
7809675957v(t) and a(t) has different signsspeed of particle decreasing38
7809675958∫(x^n)dxx^(n+1)∕(n+1) +C39
7809675959∫(1/x)dxln|x|+C40
7809675960∫(e^kx)dxekx/k +C41
7809675961∫sinx dx-cosx+C42
7809675962∫cosx dxsinx+C43
7809675963∫sec²x dxtanx+C44
7809675964∫csc²x dx-cotx+C45
7809675965∫secxtanx dxsecx+C46
7809675966∫cscxcotx-cscx+C47
7809675967∫k dx [k IS A CONSTANT]kx+C48
78096759681st fundamental theorem of calculus(bounded by a to b) ∫f(x)dx= F(b)-F(a)49
78096759692nd fundamental theorem(bounded by 1 to x) d/dx[∫f(t)dt]= f(x)(x')50
7809675970average value(1/(b-a))[∫f(x)dx] [BOUNDED BY A TO B]51
7809675971Area between curvesA=∫f(x)-g(x) dx52
7809675972Volume (DISK)V=π∫f(x)²dx53
7809675973Volume (WASHER)V=π∫f(x)²-g(x)²dx54
7809675974∫f(x)dx [BOUNDS ARE SAME]055
7809675975Displacement of particle∫v(t)dt56
7809675976total distance of particle∫|v(t)|dt57
7809675977position of particle at specific pointp(x)= initial condition + ∫v(t)dt (bounds are initial condition and p(x))58
7809675978derivative of exponential growth equation: P(t)=Pe^ktdP/dt=kP59
7809675979Cross section for volume: square [A=s²]v=∫[f(x)-g(x)]²dx60
7809675980Cross section for volume: isosceles triangle [A=1/2s²]v= 1/2∫[f(x)-g(x)]²dx61
7809675981Cross section for volume: equilateral triangle [A=√3/4s²]v= √3/4∫[f(x)-g(x)]²dx62
7809675982Cross section for volume: semicircle [A=1/2πs²]v= 1/2π∫[f(x)-g(x)]²dx63
7809675983d/dx(sin⁻¹u)u'/√(1-u²)64
7809675984d/dx(cos⁻¹u)-u'/√(1-u²)65
7809675985d/dx(tan⁻¹u)u'/(1+u²)66
7809675986d/dx(cot⁻¹u)-u'/(1+u²)67
7809675987d/dx(sec⁻¹u)u'/|u|√(u²-1)68
7809675988d/dx(csc⁻¹u)u'/|u|√(u²-1)69
7809675989∫du/√(a²-u²)(sin⁻¹u/a)+C70
7809675990∫du/(a²+u²)(1/a)(tan⁻¹u/a)+C71
7809675991∫du/|u|√(u²-a²)(1/a)(sec⁻¹u/a)+C72
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/ap_calculus_ab_review_flashcards_8

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/