CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > AP Calculus AB Review Flashcards

AP Calculus AB Review Flashcards

Terms : Hide Images [1]
6702168438Limit Definition of Derivativelimit (as h approaches 0)= F(x+h)-F(x)/h0
6702168439Alternate Definition of Derivativelimit (as x approaches a number c)= f(x)-f(c)/x-c x≠c1
6702168440limit as x approaches 0: sinx/x12
6702168441limit as x approaches 0: 1-cosx/x03
6702168442Continuity RuleIf the limit exists (aka left limit and right limit are equal), and the limit equals the function at that point.4
6702168443Basic Derivativef(x^n)= nX^(n-1)5
6702168444d/dx(sinx)cosx6
6702168445d/dx(cosx)-sinx7
6702168446d/dx(tanx)sec²x8
6702168447d/dx(cotx)-csc²x9
6702168448d/dx(secx)secxtanx10
6702168449d/dx(cscx)-cscxcotx11
6702168450d/dx(lnu)u'/u12
6702168451d/dx(e^u)e^u(u')13
6702168452d/dx(a^u)a^u(lna)(u')14
6702168453Chain rule of f(x)^nnf(x)f'(x)15
6702168454Product rule of f(x)g(x)f'(x)g(x)+g'(x)f(x)16
6702168455Quotient rule of f(x)/g(x)g(x)f'(x)-f(x)g'(x)/g(x)²17
6702168456Intermediate Value Theoremif f(x) is continuous on [a,b], then there will be a point x=c that lies in between [a,b]18
6702168457Extreme Value Theoremif f(x) is continuous on [a,b], then f(x) has an absolute max or min on the interval19
6702168458Rolle's Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), and if f(a)=f(b), then there is at least one point (x=c) on (a,b) [DON'T INCLUDE END POINTS] where f'(c)=020
6702168459Mean Value Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), there is at least one point (x=c) where f'(c)= F(b)-F(a)/b-a21
6702168460If f'(x)=0there is a max or min on f(x) [number line test]22
6702168461If f'(x)>0f(x) is increasing23
6702168462If f'(x)<0f(x) is decreasing24
6702168463If f''(x)=0f(x) has a point of inflection & f'(x) has a max or min25
6702168464If f''(x)>0f(x) is concave up & f'(x) is increasing26
6702168465If f''(x)<0f(x) is concave down & f'(x) is decreasing27
6702168466p(t), x(t), s(t)means position function28
6702168467p'(t)v(t)= velocity29
6702168468p''(t) or v'(t)a(t)= acceleration30
6702168469v(t)=0p(t) is at rest or changing direction31
6702168470v(t)>0p(t) is moving right32
6702168471v(t)<0p(t) is moving left33
6702168472a(t)=0v(t) not changing34
6702168473a(t)>0v(t) increasing35
6702168474a(t)<0v(t) decreasing36
6702168475v(t) and a(t) has same signsspeed of particle increasing37
6702168476v(t) and a(t) has different signsspeed of particle decreasing38
6702168477∫(x^n)dxx^(n+1)∕(n+1) +C39
6702168478∫(1/x)dxln|x|+C40
6702168479∫(e^kx)dxekx/k +C41
6702168480∫sinx dx-cosx+C42
6702168481∫cosx dxsinx+C43
6702168482∫sec²x dxtanx+C44
6702168483∫csc²x dx-cotx+C45
6702168484∫secxtanx dxsecx+C46
6702168485∫cscxcotx-cscx+C47
6702168486∫k dx [k IS A CONSTANT]kx+C48
67021684871st fundamental theorem of calculus(bounded by a to b) ∫f(x)dx= F(b)-F(a)49
67021684882nd fundamental theorem(bounded by 1 to x) d/dx[∫f(t)dt]= f(x)(x')50
6702168489average value(1/(b-a))[∫f(x)dx] [BOUNDED BY A TO B]51
6702168490Area between curvesA=∫f(x)-g(x) dx52
6702168491Volume (DISK)V=π∫f(x)²dx53
6702168492Volume (WASHER)V=π∫f(x)²-g(x)²dx54
6702168493∫f(x)dx [BOUNDS ARE SAME]055
6702168494Displacement of particle∫v(t)dt56
6702168495total distance of particle∫|v(t)|dt57
6702168496position of particle at specific pointp(x)= initial condition + ∫v(t)dt (bounds are initial condition and p(x))58
6702168497derivative of exponential growth equation: P(t)=Pe^ktdP/dt=kP59
6702168498Cross section for volume: square [A=s²]v=∫[f(x)-g(x)]²dx60
6702168499Cross section for volume: isosceles triangle [A=1/2s²]v= 1/2∫[f(x)-g(x)]²dx61
6702168500Cross section for volume: equilateral triangle [A=√3/4s²]v= √3/4∫[f(x)-g(x)]²dx62
6702168501Cross section for volume: semicircle [A=1/2πs²]v= 1/2π∫[f(x)-g(x)]²dx63
6702168502d/dx(sin⁻¹u)u'/√(1-u²)64
6702168503d/dx(cos⁻¹u)-u'/√(1-u²)65
6702168504d/dx(tan⁻¹u)u'/(1+u²)66
6702168505d/dx(cot⁻¹u)-u'/(1+u²)67
6702168506d/dx(sec⁻¹u)u'/|u|√(u²-1)68
6702168507d/dx(csc⁻¹u)u'/|u|√(u²-1)69
6702168508∫du/√(a²-u²)(sin⁻¹u/a)+C70
6702168509∫du/(a²+u²)(1/a)(tan⁻¹u/a)+C71
6702168510∫du/|u|√(u²-a²)(1/a)(sec⁻¹u/a)+C72
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/ap_calculus_ab_review_flashcards_9

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/