CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > AP Calculus AB Review Flashcards

AP Calculus AB Review Flashcards

Terms : Hide Images [1]
13864607087Limit Definition of Derivativelimit (as h approaches 0)= F(x+h)-F(x)/h0
13864607088Alternate Definition of Derivativelimit (as x approaches a number c)= f(x)-f(c)/x-c x≠c1
13864607089limit as x approaches 0: sinx/x12
13864607090limit as x approaches 0: 1-cosx/x03
13864607091Continuity at a pointIf the limit exists (left limit and right limit are equal), and the limit equals the function at that point.4
13864607092d/dx (u^n)n*u^(n-1)u'5
13864607093d/dx (sinu)(cosu)u'6
13864607094d/dx (cosu)(-sinu)u'7
13864607095d/dx (tanu)(sec²u)u'8
13864607096d/dx (cotu)(-csc²u)u'9
13864607097d/dx (secu)(secutanu)u'10
13864607098d/dx (cscu)(-cscucotu)u'11
13864607099d/dx (lnu)u'/u12
13864607100d/dx (e^u)e^u(u')13
13864607101d/dx (a^u)a^u*u'*lna14
13864607102d/dx[f(g(x))]f'(g(x))g'(x) Chain Rule15
13864607103Product rule of f(x)g(x)f(x)g'(x)+g(x)f'(x)16
13864607104Quotient rule of f(x)/g(x)g(x)f'(x)-f(x)g'(x)/g(x)²17
13864607105Intermediate Value Theoremif f(x) is continuous on [a,b], then there will be a point x=c that lies in between [a,b]18
13864607106Extreme Value Theoremif f(x) is continuous on [a,b], then f(x) has an absolute max or min on the interval19
13864607107Rolle's Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), and if f(a)=f(b), then there is at least one point (x=c) on (a,b) where f'(c)=020
13864607108Mean Value Theoremif f(x) is continuous on [a,b] and differentiable on (a,b), there is at least one point (x=c) where f'(c)= F(b)-F(a)/b-a21
13864607109If f'(x)=0there is a horizontal tangent and a possible max or min22
13864860605Critical NumberIf f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined)23
13864607110If f'(x)>0f(x) is increasing24
13864607111If f'(x)<0f(x) is decreasing25
13864909165f' changes from negative to positive at x = cf(x) has a relative min at x = c26
13864927953f' changes from positive to negative at x = cf(x) has a relative max at x = c27
13864607112If f''(x)=0 at x = c(c, f(c)) is a possible point of inflection28
13864867604point of inflectionthe point where the graph changes concavity29
13864607113If f''(x)>0f(x) is concave up & f'(x) is increasing30
13864607114If f''(x)<0f(x) is concave down & f'(x) is decreasing31
13864607115p(t), x(t), s(t)means position function32
13864607116p'(t)v(t)= velocity33
13864607117p''(t) or v'(t)a(t)= acceleration34
13864607118v(t)=0particle or object is at rest or changing direction35
13864607119v(t)>0particle or object is moving right (or up)36
13864607120v(t)<0particle or object is moving left (or down)37
13864607121a(t)=0v(t) not changing38
13864607122a(t)>0v(t) increasing39
13864607123a(t)<0v(t) decreasing40
13864607124v(t) and a(t) has same signsspeed of particle increasing41
13864607125v(t) and a(t) has different signsspeed of particle decreasing42
13864607126∫(u^n)duu^(n+1)∕(n+1) +C43
13864607127∫(1/u)du or ∫(du/u)ln|u|+C44
13864607128∫(e^u)due^u +C45
13864607129∫sinu du-cosu+C46
13864607130∫cosu dusinu+C47
13864607131∫sec²u dutanu+C48
13864607132∫csc²u du-cotu+C49
13864607133∫secutanu dusecu+C50
13864607134∫cscucotu du-cscu+C51
13864607135∫k dx [k IS A CONSTANT]kx+C52
138646071361st fundamental theorem of calculus(bounded by a to b) ∫f(x)dx= F(b)-F(a)53
138646071372nd fundamental theorem(bounded by 1 to x) d/dx[∫f(t)dt]= f(x)(x')54
13864607138average value(1/(b-a))[∫f(x)dx] [BOUNDED BY A TO B]55
13864607139Area between curvesA=∫f(x)-g(x) dx56
13864607140Volume (DISK)V=π∫f(x)²dx57
13864607141Volume (WASHER)V=π∫f(x)²-g(x)²dx58
13864607142∫f(x)dx from a to a059
13864607143Displacement of particle∫v(t)dt60
13864607144total distance of particle∫|v(t)|dt61
13864895878The definite integral of a rate of change of a functionGives the total change in the original function.62
13864607145position of particle at specific pointp(x)= initial condition + ∫v(t)dt (bounds are initial condition and p(x))63
13864607146derivative of exponential growth equation: y=Ce^ktdy/dt=ky64
13864607147Cross section for volume: square [A=s²]v=∫[f(x)-g(x)]²dx65
13864607149Cross section for volume: equilateral trianglev= √3/4∫[f(x)-g(x)]²dx66
13864607150Cross section for volume: semicirclev= (π/8)∫[f(x)-g(x)]²dx67
13864607151d/dx(arcsin(u))u'/√(1-u²)68
13864607152d/dx(arccos(u))-u'/√(1-u²)69
13864607153d/dx(arctan(u))u'/(1+u²)70
13864607154d/dx(arccot(u))-u'/(1+u²)71
13864607155d/dx(arcsec(u))u'/(|u|√(u²-1))72
13864607156d/dx(arccsc(u))-u'/(|u|√(u²-1))73
13864607157∫1/√(a²-u²)duarcsin(u/a)+C74
13864607158∫1/(a²+u²)du(1/a)(arctan(u/a))+C75
13864607159∫1/(|u|√(u²-a²))du(1/a)(arcsec(|u|/a))+C76
Powered by Quizlet.com [2]

Source URL:https://course-notes.org/flashcards/ap_calculus_ab_review_flashcards_11

Links
[1] https://course-notes.org/javascript%3Avoid%280%29%3B [2] http://quizlet.com/