AP Calculus AB Formulas Flashcards
Terms : Hide Images [1]
9904734429 | Definition of Derivative | ![]() | 0 | |
9904734430 | Definition of Derivative at x = a | ![]() | 1 | |
9904734431 | Volume using Disks | ![]() | 2 | |
9904734432 | Volume using Washers | ![]() | 3 | |
9904734433 | Volume of Cross-Sections | ![]() | 4 | |
9904734439 | The particle is slowing down | ![]() | 5 | |
9904734440 | The particle is speeding up | ![]() | 6 | |
9904734441 | Total distance traveled | ![]() | 7 | |
9904734442 | Average value of a function | ![]() | 8 | |
9904734443 | Displacement | ![]() | 9 | |
9904734444 | Average rate of change or average velocity | ![]() | 10 | |
9904734493 | True | ~True or False | ![]() | 11 |
9904734445 | Fundamental Theorem of Calculus | ![]() | 12 | |
9904734446 | (x')f(x) | ![]() | 13 | |
9904734447 | |velocity| | ![]() | 14 | |
9904734448 | vertical asymptote | ![]() | 15 | |
9904734449 | hole | ![]() | 16 | |
9904734450 | slope | ![]() | 17 | |
9904734451 | concavity | sign of | ![]() | 18 |
9904734452 | Critical Points | ![]() | 19 | |
9904734453 | Possible Inflection Points | ![]() | 20 | |
9904734454 | nx^(n-1) | ![]() | 21 | |
9904734455 | Product Rule | ![]() | 22 | |
9904734456 | Quotient Rule | ![]() | 23 | |
9904734457 | e^x | ![]() | 24 | |
9904734458 | 1/x | ![]() | 25 | |
9904734459 | 1/(xlna) | ![]() | 26 | |
9904734460 | a^x∙lna | ![]() | 27 | |
9904734461 | Chain Rule | ![]() | 28 | |
9904734462 | cosx | ![]() | 29 | |
9904734463 | -sinx | ![]() | 30 | |
9904734464 | (secx)^2 | ![]() | 31 | |
9904734465 | -(cscx)^2 | ![]() | 32 | |
9904734466 | -cscxcotx | ![]() | 33 | |
9904734467 | secxtanx | ![]() | 34 | |
9904734468 | 1/[f'(f^(-1)(a))] | ![]() | 35 | |
9904734469 | d/dx arcsin u | ![]() | 36 | |
9904734470 | d/dx arccos u | ![]() | 37 | |
9904734471 | d/dx arctan u | ![]() | 38 | |
9904734472 | d/dx arccot u | ![]() | 39 | |
9904734473 | d/dx arcsec u | ![]() | 40 | |
9904734474 | d/dx arccsc u | ![]() | 41 | |
9904734475 | x^(n+1)/(n+1) + C | ![]() | 42 | |
9904734476 | e^u + C | ![]() | 43 | |
9904734477 | (a^u)/lna + C | ![]() | 44 | |
9904734478 | ln|u| + C | ![]() | 45 | |
9904734479 | -cosu + C | ![]() | 46 | |
9904734480 | sinu + C | ![]() | 47 | |
9904734481 | -ln|cosu| + C | ![]() | 48 | |
9904734485 | tanu + C | ![]() | 49 | |
9904734486 | -cotu + C | ![]() | 50 | |
9904734487 | secu + C | ![]() | 51 | |
9904734488 | -cscu + C | ![]() | 52 | |
9904734489 | arcsin(u/a) + C | ![]() | 53 | |
9904734490 | (1/a)arctan(u/a) + C | ![]() | 54 | |
9904734491 | (1/a)arcsec(|u|/a) + C | ![]() | 55 | |
9904795498 | Intermediate Value Theorem | ![]() | 56 | |
9904798314 | Mean Value Theorem | ![]() | 57 | |
9904801198 | Equation of a tangent line | ![]() | 58 | |
9904834139 | Justify approximation of Riemann Sum | Use increasing or decreasing | 59 | |
9904835177 | Justify approximation of Trapezoidal Sum | Use concavity | 60 | |
9904902991 | Where is a function not differentiable? | Cusp, corner, vertical tangent line, and discontinuity. | 61 | |
9904919919 | Solving Differential Equations | 1. Separate Variables 2. Integrate both sides (add +C on one side) 3. Use Initial Condition 4. Solve for y | 62 | |
9904928822 | Horizontal Asymptote | ![]() | 63 | |
9904982890 | L'Hopital's Rule | ![]() | 64 | |
9905016925 | Finding Absolute Min or Max | 1. Find critical points 2. Evaluate ORIGINAL FUNCTION at endpoints and critical points (Absolute Min & Max guaranteed by Extreme Value Theorem) | 65 |