AP physics formula review Flashcards
Terms : Hide Images [1]
13665801136 | Equivalent capacitance (series) | Ceq=(C₁⁻¹+C₂⁻¹+C₃⁻¹)⁻¹ | 0 | |
13665801137 | Equivalent capacitance (parallel) | Ceq= C₁+C₂+C₃ | 1 | |
13665801138 | Total charge for capacitors in parallel | Qtotal = Q₁ + Q₂ + Q₃ | 2 | |
13665801139 | Magnification of an image (2 eq) | m=Hi/H₀ = -Di/D₀ | 3 | |
13665801140 | mass-energy equivalence | E = mc² | 4 | |
13665801141 | Momentum of a photon (3 eq) | P= E/c = hf/c = h/λ | 5 | |
13665801142 | Work Function | Φ=hf₀ | 6 | |
13665801143 | Photoelectric effect (including stopping potential) | Ephoton=Φ+qv | 7 | |
13665801144 | Photoelectric effect (including Kmax) | Ephoton=Φ+Kmax | 8 | |
13665801145 | Energy of a photon (2 eq) | E = hf = hc/λ | 9 | |
13665801146 | Emf of moving bar in a magnetic field | ε=BlV | 10 | |
13665801147 | Faraday's Law of Induction | E = -∆Φ/∆t | 11 | |
13665801148 | Magnetic Flux | Φ = NBA = NBAcosθ | 12 | |
13665801149 | Thin Lens equation | 1/ƒ = 1/do + 1/di | 13 | |
13665801150 | Snell's Law | n₁sinθ₁=n₂sinθ₂ | 14 | |
13665801151 | index of refraction | n = c/v | 15 | |
13665801152 | Critical angle | sinθc=n₂/n₁ | 16 | |
13665801153 | Thin membrane interference | 2nt = ___λ | 17 | |
13665801154 | Total Resistance (series) | Rt= R₁+R₂+R₃ | 18 | |
13665801155 | Total resistance (parallel) | Rt=(R₁⁻¹+ R₂⁻¹ +R₃⁻¹) | 19 | |
13665801156 | Charge including time | Q=IT | 20 | |
13665801157 | Resistance in a wire of length L and area A | Rwire=ρL/A | 21 | |
13665801158 | Pressure exerted on an area A | P=F/A | 22 | |
13665801159 | Absolute Pressure | P = Patm + ρgh | 23 | |
13665801160 | guage pressure | Pguage=ρgh | 24 | |
13665801161 | Volume Flow Rate | A₁V₁=A₂V₂ | 25 | |
13665801162 | Buoyant Force | Fb=ρvg | 26 | |
13665801163 | Density | ρ=m/v | 27 | |
13665801164 | Bernoulli's Equation | P₁+ρgh+1/2ρv²=P₂+ρgh+1/2ρv² | 28 | |
13665801165 | Force on a charge(q) moving parallel to a magnetic field | 0N | 29 | |
13665801166 | Force on a current carrying wire oriented ⊥ to a magnetic field | F=BIL | 30 | |
13665801167 | Force between two parallel current carrying wires | F=(µ₀I₁I₂L)/(2πr) | 31 | |
13665801168 | Limits of Human Sight | 750nm-400nm | 32 | |
13665801169 | The wave equation | v=ƒλ | 33 | |
13665801170 | Magnetic Field a distance r from a current carrying wire | Bwire=(µ₀I)/(2πr) | 34 | |
13665801171 | New wavelength | λ₂=n₁λ₁/n₂ | 35 | |
13665801172 | Capacitance if area of plates is known | C = kε₀A/d | 36 | |
13665801173 | Electric potential around q | V=KQ/r | 37 | |
13665801174 | Force on a charge in an electric field | F=qE | 38 | |
13665801175 | Coulomb's Law | Fe=k|q¹q²|/r² | 39 | |
13665801176 | Charge on a capacitor | Q=CV | 40 | |
13665801177 | Energy stored in a capacitor (3 eq) | Ucap= 1/2CV² = 1/2QV = 1/2 (Q²/C) | 41 | |
13665801178 | Formula definition of Work | W = F ⋅ d | 42 | |
13665801179 | electric potential energy | Ue = qV | 43 | |
13665801180 | Electric field a distance from a charge | E=k|Q|/r² | 44 | |
13665801181 | Ohm's Law | V=IR | 45 | |
13665801182 | Total charge for capacitors in series | Qt = Q1 = Q2 = Q3 etc... | 46 | |
13665801183 | Terminal voltage if Rext is known | Vab=IRext | 47 | |
13665801184 | Terminal voltage if EMF is known | V=ε-Irint | 48 | |
13665801185 | Voltage across the plates of a capacitor | V=ED | 49 | |
13665801186 | Electric Energy (3 eq) | E = VIT = I²R = (V²/R)t | 50 | |
13665801187 | Electric Power (3 eq) | P= IV = I²R = V²/R | 51 | |
13665801188 | Force on a charge moving perpendicularly through a magnetic field | F= qvB | 52 | |
13665801189 | Work to move a point charge a distance away from another charge | W=k(qQ)/r | 53 | |
13665801190 | Change in heat during an isovolumetric process | Q = nCv∆T | 54 | |
13665801191 | Frequency of a spring mass | ƒ=1/(2π√m/k) | 55 | |
13665801192 | Period of a pendulum | T(p) = 2∏√(ℓ/g) | 56 | |
13665801193 | Frictional Force | Ff = Fn µ | 57 | |
13665801194 | Frictional Force on an incline | Ff = mgcosθµ | 58 | |
13665801195 | Acceleration | a=∆v/∆t | 59 | |
13665801196 | Average Speed | S=∆d/∆t | 60 | |
13665801197 | Velocity | v=∆x/∆t | 61 | |
13665801198 | Average Velocity of a molecule of gas | V = √((3kT) / m) | 62 | |
13665801199 | Change in internal energy during a cyclic process | ∆U=0J | 63 | |
13665801200 | first law of thermodynamics | ∆U = ∆Q + ∆W | 64 | |
13665801201 | Acceleration of a mass sliding UP an incline, with friction | a=gsinθ+gcosθµ | 65 | |
13665801202 | Acceleration of a mass sliding DOWN an incline, with friction | a=gcosθµ-gsinθ | 66 | |
13665801203 | Heat required to raise the temp of a substance | ∆Q=mc∆T | 67 | |
13665801204 | Heat required to vaporize a substance | ∆Q=MLv | 68 | |
13665801205 | Heat required to melt a substance | ∆Q=MLf | 69 | |
13665801206 | Forgotten power equation | P=FV | 70 | |
13665801207 | Energy of a spring-mass when spring is neither at maximum displacement, nor at the equilibrium point | 1/2KA²=1/2Kx²+1/2mv² | 71 | |
13665801208 | Ideal Efficiency | (Th - Tl) / Th | 72 | |
13665801209 | Newton's Second Law of Motion | ∑F = ma | 73 | |
13665801210 | Torque | T = rFsinθ | 74 | |
13665801211 | Ideal gas law (2 eq) | PV=nRT, PV=nKT | 75 | |
13665801212 | Boyle's Law | P₁V₁=P₂V₂ | 76 | |
13665801213 | Heat of an isobaric process | ∆Q = nCp∆T | 77 | |
13665801214 | Work (thermodynamics) | W= -PΔV | 78 | |
13665801215 | Internal energy of an ideal gas | U=3/2nRT | 79 | |
13665801216 | Actual efficiency | εactual = |Wnet|/Qin | 80 | |
13665801217 | kinetic energy | KE = ½mv² | 81 | |
13665801218 | gravitational potential energy | Fg=mgh | 82 | |
13665801219 | Newton's Law of Universal Gravitation | Fg = G (m1m2)/r² | 83 | |
13665801220 | centripetal acceleration | ac = v²/r | 84 | |
13665801221 | acceleration due to gravity at the surface of a planet mass M and diameter d | g=G(M/(d/s)²) | 85 | |
13665801222 | Momentum | P=mv | 86 | |
13665801223 | Impulse (2 eq.) | J= Ft = mv-mv₀ | 87 | |
13665801224 | Weight | W=mg | 88 | |
13665801225 | First Kinematic | V=V₀+at | 89 | |
13665801226 | Second Kinematic | Δx = V₀t + ½at² | 90 | |
13665801227 | Third Kinematic | V² = V₀² + 2aΔx | 91 | |
13665801228 | Beat frequency | f(beat) = |f₁-f₂| | 92 | |
13665801229 | Length of a string producing the fundamental frequency | L=v/2ƒ | 93 | |
13665801230 | Natural frequency of a closed tube of length l | ƒ=v/(4l) | 94 | |
13665801231 | Wavelength in an open tube | λ=2L | 95 | |
13665801232 | Frequency of a pendulum | f = 1/2π√g/l | 96 | |
13665801233 | Velocity of waves on a string if tension is known | V = √(T/(m/l)) | 97 | |
13665801234 | Period of a spring-mass | T = 2π√(m/k) | 98 | |
13665801235 | Charles' Law | V₁/T₁=V₂/T₂ | 99 | |
13665801236 | Gay-Lussac's Law | P₁/T₁=P₂/T₂ | 100 | |
13665801237 | Work done during an isovolumetric process | ∆W=0J | 101 | |
13665801238 | Change in internal energy during an isothermal process | ∆U=0J | 102 | |
13665801239 | Spring Potential Energy | Us = ½kx² | 103 | |
13665801240 | Heat due to friction on an incline | Q = mgcosθµd | 104 | |
13665801241 | Heat due to friction on a level surface | Q = Fnµd | 105 | |
13665801242 | Speed | S=d/t | 106 | |
13665801243 | First Angular Kinematic | ω = ω₀ + αt | 107 | |
13665801244 | Second Angular Kinematic | ∆θ = ω₀t + ½αt² | 108 | |
13665801245 | Third angular kinematic | ω² = ω₀² + 2α∆θ | 109 | |
13665801246 | Centripetal acceleration with linear quantities and angular quantities | ac=v²/r & ac=w²r | 110 | |
13665801247 | Moment of Inertia of a point | I=mr² | 111 | |
13665801248 | Center of mass | x = (m₁x₁ + m₂x₂ + m₃x₃ + ...) /(m₁ + m₂ + m₃ + ...) | 112 | |
13665801249 | Centripetal acceleration in radians of the second hand of a clock | ac= 4π²r/60sec | 113 | |
13665801250 | Rotational Kinetic Energy | Krot = ½Iω² | 114 | |
13665801251 | Net torque | Στ=Iα | 115 | |
13665801252 | Angular momentum for a 3-D object rotating | L=Iw | 116 | |
13665801253 | position as a function of time using angular quantities | w=θ/t | 117 | |
13665801254 | conservation of angular momentum when a ball strikes the bar and causes rotation | I= (mr²+1/3mL²)w | 118 | |
13665801255 | Energy of a spring mass | Us=½KA² | 119 | |
13665801256 | Height of block in terms of theta and L | ∆y=L - Lcosθ | 120 | |
13665801257 | Units of power (not watts) | Watt = J/sec | 121 | |
13665801258 | Units of Current (not Amps) | Amp=c/sec | 122 | |
13665801259 | Three formulae for power | P = FV = E/t = VI | 123 | |
13665801260 | Combined Gas Law | P₁V₁÷T₁ = P₂V₂÷T₂ | 124 | |
13665801261 | Limits of human hearing | 20-20111Hz | 125 | |
13665801262 | Diameter of a hydrogen atom | 1E-10m | 126 | |
13665801263 | Units of electric field (2) | V/m(capacitor) & N/C (point charge) | 127 | |
13665801264 | Units of momentum | kg m/s | 128 | |
13665801265 | Units of energy | Joule or eV | 129 | |
13665801266 | Units of the spring constant k | N/m | 130 | |
13665801267 | R.A. Millikan | elemental charge (e) - oil drop experiment | 131 | |
13665801268 | Thomas Young | Light is a wave - Double Slit | 132 | |
13665801269 | Davisson and Germer | electrons are waves | 133 | |
13665801270 | JJ Thompson | q/m ratio for electron - Cathode Ray Tubes | 134 | |
13665801271 | Ernest Rutherford | Nucleus is small & ⊕ - gold foil | 135 | |
13665801272 | Niels Bohr | quantized energy levels which explained bright line spectra | 136 |