CourseNotes
Published on CourseNotes (https://course-notes.org)

Home > AP Statistics > Probability Distributions > Conditional Probability Distribution

Conditional Probability Distribution

Conditional Probability Distribution

The conditional probability distribution of a discrete random variable X, given a second discrete random variable Y, is the probability distribution of X conditioned on the fact that Y assumes a value y. The conditional probability distribution of X given Y is denoted by pX|Y(x|y) and is defined as

5rv021

Conditional probabilities, like simple probabilities, also sum up to 1, i.e.,

5rv022

If X and Y are independent random variables, then

5rv023

i.e., the probability distribution of X is not affected by the value of Y, and vice-versa.

EX. The random variables X and Y have the following joint probability distribution:

(x, y) pX,Y(x, y)
   
(0,0) 2/9
(0, 1) 1/3
(0, 2) 1/15
(1, 0) 2/9
(1, 1) 2/15
(2, 0) 1/45

The marginal distributions px(x) and py(y) can be calculated as follows:

5rv024

= px,y(x,0) + px,y(x,1) + px,y(x,2)

px(0) = pX,Y(0,0) + pX,Y(0,1) + pX,Y(0,2)

= 2/9 + 1/3 + 1/15
= 28/45

px(1) = pX,Y(1,0) + pX,Y(1,1) + pX,Y(1,2)

= 2/9 + 2/15
= 16/45

px(2) = pX,Y(2,0) + pX,Y(2,1) + pX,Y(2,2)

= 1/45 

 5rv025

py(0) = pX,Y(0,0) + pX,Y(1,0) + pX,Y(2,0)

= 2/9 + 2/9 + 1/45
= 7/15

py(1) = pX,Y(0,1) + pX,Y(1,1) + pX,Y(2,1)

= 1/3 + 2/15
= 7/15

py(2) = pX,Y(0,2) + pX,Y(1,2) + pX,Y(2,2)

= 1/15

The conditional probability of X given Y is calculated as follows:

5rv026

px(0|0) = (15/7) pX,Y(0,0) = (15/7) (2/9) = 10/21
px(1|0) = (15/7) pX,Y(1,0) = (15/7) (2/9) = 10/21
px(2|0) = (15/7) pX,Y(2,0) = (15/7) (1/45) = 1/21

5rv027

px(0|1)= (15/7) pX,Y(0,1) = (15/7) (1/3) = 5/7
px(1|1)= (15/7) pX,Y(1,1) = (15/7) (2/15) = 2/7
px(2|1)= (15/7) pX,Y(2,1) = (15/7) (0) = 0

5rv028

px(0|2) = 15 pX,Y(0,2) = 15 (1/15) = 1
px(1|2) = 15 pX,Y(1,2) = 15 (0) = 0
px(2|2) = 15 pX,Y(2,2) = 15 (0) = 0

The conditional probability of Y given X is calculated as follows:

5rv029

5rv030

py(0|0) = (45/28) pX,Y(0,0) = (45/28)(2/9) = 5/14
py(1|0) = (45/28) pX,Y(0,1) = (45/28)(1/3) = 15/28
py(2|0) = (45/28) pX,Y(0,2) = (45/28)(1/15) = 3/28

5rv031

py(0|1) = (45/16) pX,Y(1,0) = (45/16)(2/9) = 5/8
py(1|1) = (45/16) pX,Y(1,1) = (45/16)(2/15) = 3/8
py(2|1) = (45/16) pX,Y(1,2) = (45/16)(0) = 0

5rv032

py(0|2) = 45 pX,Y(2,0) = 45 (1/45) = 1
py(1|2) = 45 pX,Y(2,1) = 45 (0) = 0
py(2|2) = 45 pX,Y(2,2) = 45 (0) = 0

 

Subject: 
Statistics [1]
Subject X2: 
Statistics [1]

Source URL:https://course-notes.org/statistics/probability_distributions/conditional_probability_distribution#comment-0

Links
[1] https://course-notes.org/subject/statistics