AP Notes, Outlines, Study Guides, Vocabulary, Practice Exams and more!

Arithmetic Progression

An arithmetic progression is a sequence in which each term (after the first) is determined by adding a constant to the preceding term. This constant is called the common difference of the arithmetic progression. An arithmetic progression can be defined as follows:

The arithmetic progression { an } = a1, a2, a3, ...., an ,
where n = 1, 2, 3, . . .
Its terms are determined by the equation:

an = a1 + (n - 1)d, where

a1 is the first term of the arithmetic progression
an is the nth term of the arithmetic progression
n is the term number
d is the common difference of the arithmetic progression

The sum of the first n terms of an arithmetic progression is
calculated as

Sn = n ( a1 + an ) / 2

or

Sn = n ( 2a1 + (n - 1)d ) / 2 where an = a1 + (n - 1)d

EX. For the sequence { an } = 1, 3, 5, 7, 9, ..... where an = 2n - 1

an = 2n - 1 = 1 + 2n - 2 = 1 + 2(n-1)

The sequence { an } = 1, 3, 5, 7, 9, ..... is an arithmetic sequence with a1 = 1 and d = 2. The 6th to 10th terms of this arithmetic progression are

a6 = 1 + 2(6-1) = 1 + 10 = 11
a7 = 1 + 2(7-1) = 1 + 12 = 13
a8 = 1 + 2(8-1) = 1 + 14 = 15
a9 = 1 + 2(9-1) = 1 + 16 = 17
a10 = 1 + 2(10-1) = 1 + 18 = 19

The sum of the first n terms of the sequence { an } = 1, 3, 5, 7, 9,. . . is
Sn = n (2(1) + (n - 1)2) / 2 = n (2 + 2n - 2) / 2 = 2n2 / 2 = n2

We can verify this for the first 5 terms:

S1 = 12 = 1
S2 = 22 = 1 + 3 = 4
S3 = 32 = 1 + 3 + 5 = 9
S4 = 42 = 1 + 3 + 5 + 7 = 16
S5 = 52 = 1 + 3 + 5 + 7 + 9 = 25

Subject: 
Subject X2: 

Need Help?

We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.

For general help, questions, and suggestions, try our dedicated support forums.

If you need to contact the Course-Notes.Org web experience team, please use our contact form.

Need Notes?

While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!