Conic Sections Translation of Axes:
Ellipse:
standard equations for ellipse:
where b2 = a2 - c2
center: (h,k) (h,k)major axis: x = h, length 2a y = k, length 2aminor axis: y = k, length 2b x = h, length 2bfoci: (h ± c,k) (h, k ± c)vertices: (h ± a,k) (h, k ± a)covertices: (h, k ± b) (h ± b,k)
a is always larger than b; and a,b, and c are related by c2 = a2 - b2
ex.
graph 16x2 + 25y2 - 64x-200y + 64 = 0
convert to standard form
16x2 - 64x + 25y2 -200y = - 64
complete the square for the x and y terms
(16x2 - 64x ) + (25y2 -200y ) = - 64
16(x2 - 4x ) + 25(y2 - 8y ) = -64 complete the square
16(x2- 4x + 4) + 25(y2- 8y + 16) = -64 + 64 + 400
16(x - 2)2 + 25(y - 4)2 = 400
a = 5; b = 4
center: (2,4)
major axis: x = 2, length 10
minor axis: y = 4, length 8
c2 = a2 - b2
c2 = 25 - 16
c2 = 9
c = 3
foci: (2 ± 3,4) (5,4) and (-1,4)vertices: (2 ± 5,4) (7,4) and (-3,4)covertices: (2, 4 ± 4) (2,8) and (2,0)
ex.
graph 25x2 + 9y2+ 200x + 54y + 256 = 0
convert to standard form
25x2 +200x + 9y2+ 4y = -256
complete the square for the x and y terms
(25x2+200x )+ (9y2+ 54y ) = - 256
25(x2 + 8x ) + 9(y2 + 6y ) = -256
25(x2 + 8x + 16) + 9(y2 + 6y + 9) = -256 + 400 + 81
25(x + 4)2 + 9(y + 3)2 = 225
a = 5; b = 3
center: (-4,-3)
major axis: y = -3, length 10
minor axis: x = -4, length 6
c2 = a2 - b2
c2 = 25 - 9
c2 = 16
c = 4
foci: (-4, -3 ± 4) (-4,1) and (-4,-7)vertices: (-4, -3 ± 5) (-4,2) and (-4,-8)covertices: (-4 ± 3,-3) (-1,-3) and (-7,-3)