Equations can be viewed by activating this chrome extension: https://chrome.google.com/webstore/detail/tex-all-the-things/cbimabofgmfdkicghcadidpemeenbffn
12375390931 | 1st kinematics equation | $v_f=v_0+at$ | 0 | |
12375390932 | 2nd kinematics equation | $x=x_0+v_0t+\frac{1}{2}at^2$ | 1 | |
12375391770 | 3rd kinematics equation | $v_f^2=v_0^2+2a\left(x-x_0\right)$ | 2 | |
12375391771 | Net force | $F_{net}=ma$ | 3 | |
12375391772 | Force of friction | $F_f=\mu F_n$ | 4 | |
12375393812 | Centripetal acceleration | $a_c=\frac{v^2}{r}$ | 5 | |
12375393813 | Torque | $\tau=r_\perp F=rF\sin \theta$ | 6 | |
12375393814 | Momentum | $p=mv$ | 7 | |
12375394666 | Kinetic energy | $K=\frac{1}{2}mv^2$ | 8 | |
12375394667 | Work | $W=\Delta E = F_\parallel d=Fd \cos \theta$ | 9 | |
12375394668 | Power | $P=\frac{\Delta E}{\Delta t}$ | 10 | |
12375411635 | Force of a spring | $F_s=-kx$ | 11 | |
12375411636 | Potential energy of a spring | $U_s=\frac{1}{2}kx^2$ | 12 | |
12375412479 | Period of a mass on a spring | $T_s=2 \pi \sqrt{\frac{m}{k}}$ | 13 | |
12375412480 | Period of a pendulum | $T_p=2 \pi \sqrt{\frac{l}{g}}$ | 14 | |
12375413281 | Period in terms of frequency | $T=\frac{1}{f}$ | 15 | |
12390694112 | Gravitational force between two massive objects | $F_G=G\frac{M_1M_2}{r^2}$ | 16 | |
12390713641 | Gravitational potential energy between two massive objects | $U_G=-G\frac{M_1M_2}{r}$ | 17 | |
12375414634 | Electric force between two point charges | $F_E=\frac{kq_1q_2}{r^2}$ | 18 | |
12375414635 | Electric field in terms of electric force | $E=\frac{F_E}{q}$ | 19 | |
12375521875 | Electric field at some point due to a point charge | $E=\frac{kq}{r^2}$ | 20 | |
12375416061 | Potential energy in terms of potential | $\Delta U_E=q \Delta V$ | 21 | |
12375417381 | Potential energy between two point charges | $\Delta U_E = \frac{kq_1q_2}{r}$ | 22 | |
12375418925 | Uniform electric field between two parallel plates | $E=\frac{\Delta V}{\Delta r}$ | 23 | |
12375421081 | The potential at some point due to a point charge | $V=\frac{kq}{r}$ | 24 | |
12375421082 | Definition of capacitance | $\Delta V = \frac{Q}{C}$ | 25 | |
12375423434 | Capacitance of a parallel plate capacitor | $C=\kappa \epsilon_0 \frac{A}{d}$ | 26 | |
12375423435 | Energy stored on a capacitor | $U_C=\frac{1}{2}Q\Delta V=\frac{1}{2}C\left(\Delta V\right)^2$ | 27 | |
12375540583 | Electric field inside a capacitor | $E=\frac{Q}{\epsilon_0 A}$ | 28 | |
12375424012 | Definition of current | $I=\frac{\Delta Q}{\Delta t}$ | 29 | |
12375424013 | Resistance of a wire | $R=\frac{\rho l}{A}$ | 30 | |
12375424014 | Ohm's law | $V=IR$ | 31 | |
12375424883 | Power in an electrical circuit | $P=IV$ | 32 | |
12375424884 | How to add parallel capacitors | $C_p=\sum_i{C_i}$ | 33 | |
12375426087 | How to add series capacitors | $\frac{1}{C_s}=\sum_i\frac{1}{C_i}$ | 34 | |
12375426088 | How to add series resistors | $R_s=\sum_i{R_i}$ | 35 | |
12375426833 | How to add parallel resistors | $\frac{1}{R_p}=\sum_i\frac{1}{R_i}$ | 36 | |
12375426834 | Magnetic force on a charge | $\overrightarrow{F_M}=q\overrightarrow{v}\times \overrightarrow{B}$ | 37 | |
12375565284 | Magnetic force on a charge when it is moving in a direction not perpendicular to the magnetic field | $\left|\overrightarrow{F_M}\right|=\left|q\overrightarrow{v}\right|\left|\sin{\theta}\right|\left|\overrightarrow{B}\right|$ | 38 | |
12375428892 | Magnetic force on a wire | $\overrightarrow{F_M}=I\overrightarrow{l}\times\overrightarrow{B}$ | 39 | |
12375567620 | Magnetic force on a wire when it is not perpendicular to the magnetic field | $\left|\overrightarrow{F_M}\right|=\left|I\overrightarrow{l}\right|\left|\sin{\theta}\right|\left|\overrightarrow{B}\right|$ | 40 | |
12375430180 | Magnetic field due to a long straight wire | $B=\frac{\mu_0}{2 \pi}\frac{I}{r}$ | 41 | |
12375430181 | Magnetic flux | $\Phi_B=\overrightarrow{B}\cdot\overrightarrow{A}$ | 42 | |
12375571969 | Magnetic flux when the loop is at an angle to the magnetic field | $\Phi_B=\left|\overrightarrow{B}\right|\cos\left(\theta\right)\left|\overrightarrow{A}\right|$ | 43 | |
12375430182 | Induced EMF | $\mathcal{E}=-\frac{\Delta \Phi_B}{\Delta t}$ | 44 | |
12375432055 | Induced EMF in the special case of a rectangular wire with constant speed | $\mathcal{E}=Blv$ | 45 | |
12375582442 | Density | $\rho = \frac{m}{V}$ | 46 | |
12375432056 | Pressure in a static fluid column | $P=P_0+\rho g h$ | 47 | |
12375433222 | Buoyant force - Archimedes' principle | $F_b=\rho V g$ | 48 | |
12375433223 | Continuity equation | $A_1v_1=A_2v_2$ | 49 | |
12375434778 | Bernoulli's equation | $P_1+\rho g y_1 +\frac{1}{2}\rho v_{1}^2=P_2+\rho g y_2 +\frac{1}{2}\rho v_{2}^2$ | 50 | |
12375434779 | Thermal expansion | $\Delta L = \alpha L_0 \Delta T$ | 51 | |
12375434780 | Definition of pressure | $P=\frac{F}{A}$ | 52 | |
12375435525 | Ideal gas law | $PV=nRT=Nk_BT$ | 53 | |
12375436066 | Average kinetic energy per molecule in an ideal gas | $K=\frac{3}{2}k_B T$ | 54 | |
12375436071 | rms speed of the molecules in an ideal gas | $v_{rms}=\sqrt{\frac{3k_B T}{m}}$ | 55 | |
12375438096 | Work done on a gas in an isobaric process | $W=-P\Delta V$ | 56 | |
12375438097 | First law of thermodynamics | $\Delta U = Q+W$ | 57 | |
12375599796 | Heat transfer through a rod | $\frac{Q}{\Delta t}=\frac{kA \Delta T}{L}$ | 58 | |
12375439267 | Definition of efficiency | $e=\frac{W}{Q_H}$ | 59 | |
12375439268 | Efficiency of an ideal heat engine | $e_{ideal}=\frac{T_H-T_C}{T_H}$ | 60 | |
12375442083 | Velocity of a wave | $\lambda=\frac{v}{f}$ | 61 | |
12375442084 | Definition of the index of refraction | $n=\frac{c}{v}$ | 62 | |
12375443042 | Snell's law | $n_1 \sin \theta_1 = n_2 \sin \theta_2$ | 63 | |
12375443719 | How to find the critical angle for total internal reflection | $\sin \theta_c=\frac{n_2}{n_1}$ | 64 | |
12375443720 | Lensmaker's equation/Mirror equation | $\frac{1}{f}=\frac{1}{s_o}+\frac{1}{s_i}$ | 65 | |
12375444710 | Magnification | $M=\frac{h_i}{h_o}=\frac{s_i}{s_o}$ | 66 | |
12375444711 | Focal length of a spherical mirror | $f=\frac{r}{2}$ | 67 | |
12375642105 | The path difference for light passing through slits | $\Delta L = m \lambda$ | 68 | |
12375446976 | Position of constructive interference points for light passing through slits | $d \sin \theta=m \lambda$ | 69 | |
12375448950 | Position of constructive interference points for light passing through slits if the angle to the screen is small | $x=\frac{m \lambda L}{d}$ | 70 | |
12375448954 | Energy of a photon | $E=hf=pc$ | 71 | |
12375451130 | Kinetic energy of an electron ejected from a metal surface | $K_{max}=hf-\phi$ | 72 | |
12375451131 | De Broglie wavelength | $\lambda=\frac{h}{p}$ | 73 | |
12375452785 | Conversion between mass and energy | $E=mc^2$ | 74 |