AP Calculus AB, calculus terms and theorems
1345526940 | 1 | 1 | ||
1345526941 | 0 | 2 | ||
1345526942 | Squeeze Theorem | 3 | ||
1345526943 | f is continuous at x=c if... | 4 | ||
1345526944 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | 5 | |
1345526945 | Global Definition of a Derivative | 6 | ||
1345526946 | Alternative Definition of a Derivative | f '(x) is the limit of the following difference quotient as x approaches c | 7 | |
1345526947 | nx^(n-1) | 8 | ||
1345526948 | 1 | 9 | ||
1345526949 | cf'(x) | 10 | ||
1345526950 | f'(x)+g'(x) | 11 | ||
1345526951 | The position function OR s(t) | 12 | ||
1345526952 | f'(x)-g'(x) | 13 | ||
1345526953 | uvw'+uv'w+u'vw | 14 | ||
1345526954 | cos(x) | 15 | ||
1345526955 | -sin(x) | 16 | ||
1345526956 | sec²(x) | 17 | ||
1345526957 | -csc²(x) | 18 | ||
1345526958 | sec(x)tan(x) | 19 | ||
1345526959 | dy/dx | 20 | ||
1345526960 | f'(g(x))g'(x) | 21 | ||
1345526961 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | 22 | |
1345526962 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | 23 | |
1345526963 | Rolle's Theorem | Let f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval). | 24 | |
1345526964 | Mean Value Theorem | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | 25 | |
1345526965 | First Derivative Test for local extrema | 26 | ||
1345526966 | Point of inflection at x=k | 27 | ||
1345526967 | Combo Test for local extrema | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | 28 | |
1345526968 | Horizontal Asymptote | 29 | ||
1345526969 | L'Hopital's Rule | 30 | ||
1345526970 | x+c | 31 | ||
1345526971 | sin(x)+C | 32 | ||
1345526972 | -cos(x)+C | 33 | ||
1345526973 | tan(x)+C | 34 | ||
1345526974 | -cot(x)+C | 35 | ||
1345526975 | sec(x)+C | 36 | ||
1345526976 | -csc(x)+C | 37 | ||
1345526977 | Fundamental Theorem of Calculus #1 | The definite integral of a rate of change is the total change in the original function. | 38 | |
1345526978 | Fundamental Theorem of Calculus #2 | 39 | ||
1345526979 | Mean Value Theorem for integrals or the average value of a functions | 40 | ||
1345526980 | ln(x)+C | 41 | ||
1345526981 | -ln(cosx)+C = ln(secx)+C | hint: tanu = sinu/cosu | 42 | |
1345526982 | ln(sinx)+C = -ln(cscx)+C | 43 | ||
1345526983 | ln(secx+tanx)+C = -ln(secx-tanx)+C | 44 | ||
1345526984 | ln(cscx+cotx)+C = -ln(cscx-cotx)+C | 45 | ||
1345526985 | If f and g are inverses of each other, g'(x) | 46 | ||
1345526986 | Exponential growth (use N= ) | 47 | ||
1345526987 | Area under a curve | 48 | ||
1345526988 | Formula for Disk Method | Axis of rotation is a boundary of the region. | 49 | |
1345526989 | Formula for Washer Method | Axis of rotation is not a boundary of the region. | 50 | |
1345526990 | Inverse Secant Antiderivative | 51 | ||
1345526991 | Inverse Tangent Antiderivative | 52 | ||
1345526992 | Inverse Sine Antiderivative | 53 | ||
1345526993 | Derivative of eⁿ | 54 | ||
1345526994 | ln(a)*aⁿ+C | 55 | ||
1345526995 | Derivative of ln(u) | 56 | ||
1345526996 | Antiderivative of f(x) from [a,b] | 57 | ||
1345526997 | Opposite Antiderivatives | 58 | ||
1345526998 | Antiderivative of xⁿ | 59 | ||
1345526999 | Adding or subtracting antiderivatives | 60 | ||
1345527000 | Constants in integrals | 61 | ||
1345527001 | Identity function | D: (-∞,+∞) R: (-∞,+∞) | 62 | |
1345527002 | Squaring function | D: (-∞,+∞) R: (o,+∞) | 63 | |
1345527003 | Cubing function | D: (-∞,+∞) R: (-∞,+∞) | 64 | |
1345527004 | Reciprocal function | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | 65 | |
1345527005 | Square root function | D: (0,+∞) R: (0,+∞) | 66 | |
1345527006 | Exponential function | D: (-∞,+∞) R: (0,+∞) | 67 | |
1345527007 | Natural log function | D: (0,+∞) R: (-∞,+∞) | 68 | |
1345527008 | Sine function | D: (-∞,+∞) R: [-1,1] | 69 | |
1345527009 | Cosine function | D: (-∞,+∞) R: [-1,1] | 70 | |
1345527010 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | 71 | |
1345527011 | Greatest integer function | D: (-∞,+∞) R: (-∞,+∞) | 72 | |
1345527012 | Logistic function | D: (-∞,+∞) R: (0, 1) | 73 | |
1345527013 | Given f(x): Is f continuous @ C Is f' continuous @ C | Yes lim+=lim-=f(c) No, f'(c) doesn't exist because of cusp | 74 | |
1345527014 | Given f'(x): Is f continuous @ c? Is there an inflection point on f @ C? | This is a graph of f'(x). Since f'(C) exists, differentiability implies continuouity, so Yes.
Yes f' decreases on X | 75 |