AP Calculus AB, calculus terms and theorems
720712265 | 1 | 1 | ||
720712266 | 0 | 2 | ||
720712267 | Squeeze Theorem | 3 | ||
720712268 | f is continuous at x=c if... | 4 | ||
720712269 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | 5 | |
720712270 | Global Definition of a Derivative | 6 | ||
720712271 | Alternative Definition of a Derivative | f '(x) is the limit of the following difference quotient as x approaches c | 7 | |
720712272 | nx^(n-1) | 8 | ||
720712273 | 1 | 9 | ||
720712274 | cf'(x) | 10 | ||
720712275 | f'(x)+g'(x) | 11 | ||
720712276 | f'(x)-g'(x) | 12 | ||
720712277 | uvw'+uv'w+u'vw | 13 | ||
720712278 | cos(x) | 14 | ||
720712279 | -sin(x) | 15 | ||
720712280 | sec²(x) | 16 | ||
720712281 | -csc²(x) | 17 | ||
720712282 | sec(x)tan(x) | 18 | ||
720712283 | dy/dx | 19 | ||
720712284 | f'(g(x))g'(x) | 20 | ||
720712285 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | 21 | |
720712286 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | 22 | |
720712287 | Mean Value Theorem | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | 23 | |
720712288 | First Derivative Test for local extrema | 24 | ||
720712289 | Point of inflection at x=k | 25 | ||
720712290 | Combo Test for local extrema | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | 26 | |
720712291 | Horizontal Asymptote | 27 | ||
720712292 | L'Hopital's Rule | 28 | ||
720712293 | Squaring function | D: (-∞,+∞) R: (o,+∞) | 29 | |
720712294 | Cubing function | D: (-∞,+∞) R: (-∞,+∞) | 30 | |
720712295 | Reciprocal function | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | 31 | |
720712296 | Square root function | D: (0,+∞) R: (0,+∞) | 32 | |
720712297 | Exponential function | D: (-∞,+∞) R: (0,+∞) | 33 | |
720712298 | Natural log function | D: (0,+∞) R: (-∞,+∞) | 34 | |
720712299 | Sine function | D: (-∞,+∞) R: [-1,1] | 35 | |
720712300 | Cosine function | D: (-∞,+∞) R: [-1,1] | 36 | |
720712301 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | 37 | |
720712302 | Greatest integer function | D: (-∞,+∞) R: (-∞,+∞) | 38 | |
720712303 | Given f(x): Is f continuous @ C Is f' continuous @ C | Yes lim+=lim-=f(c) No, f'(c) doesn't exist because of cusp | 39 | |
720712304 | Given f'(x): Is f continuous @ c? Is there an inflection point on f @ C? | This is a graph of f'(x). Since f'(C) exists, differentiability implies continuouity, so Yes.
Yes f' decreases on X | 40 |