AP Calculus AB, calculus terms and theorems
5921716883 | f is continuous at x=c if... | ![]() | 0 | |
5921716884 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | 1 | |
5921716885 | Limit Definition of a Derivative f'(x)= | ![]() | 2 | |
5921716887 | nx^(n-1) | ![]() | 3 | |
5921716888 | 1 | ![]() | 4 | |
5921716889 | cf'(x) | ![]() | 5 | |
5921716894 | cos(x) | ![]() | 6 | |
5921716895 | -sin(x) | ![]() | 7 | |
5921716896 | sec²(x) | ![]() | 8 | |
5921716897 | -csc²(x) | ![]() | 9 | |
5921716898 | sec(x)tan(x) | ![]() | 10 | |
5921716900 | f'(g(x))g'(x) | ![]() | 11 | |
5921716901 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | 12 | |
5921716902 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | 13 | |
5921716904 | Mean Value Theorem for Derivatives | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | ![]() | 14 |
5921716905 | First Derivative Test for local extrema | ![]() | 15 | |
5921716906 | Point of inflection at x=k | ![]() | 16 | |
5921716907 | 2nd derivative test | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | ![]() | 17 |
6602390150 | Riemann Sum definition of a definite integral | ![]() | 18 | |
5921716908 | Horizontal Asymptote | ![]() | 19 | |
5921716909 | L'Hopital's Rule | ![]() | 20 | |
5921716911 | sin(x)+C | ![]() | 21 | |
5921716912 | -cos(x)+C | ![]() | 22 | |
5921716913 | tan(x)+C | ![]() | 23 | |
5921716914 | -cot(x)+C | ![]() | 24 | |
5921716915 | sec(x)+C | ![]() | 25 | |
5921716916 | -csc(x)+C | ![]() | 26 | |
5921716917 | Fundamental Theorem of Calculus #1 | The definite integral of a rate of change is the total change in the original function. | ![]() | 27 |
5921716918 | Fundamental Theorem of Calculus #2 | ![]() | 28 | |
5921716919 | Mean Value Theorem for integrals or the average value of a functions | ![]() | 29 | |
5921716920 | ln(x)+C | ![]() | 30 | |
5921716921 | -ln(cosx)+C = ln(secx)+C | hint: tanu = sinu/cosu | ![]() | 31 |
5921716922 | ln(sinx)+C | ![]() | 32 | |
5921716923 | ln(secx+tanx)+C | ![]() | 33 | |
5921716924 | -ln(cscx+cotx)+C | ![]() | 34 | |
5921716926 | dy/dt=ky | y=Ce^(kt) | ![]() | 35 |
5921716927 | Area between two curves | ![]() | 36 | |
5921716928 | Formula for Disk Method | Axis of rotation is a boundary of the region. | ![]() | 37 |
5921716929 | Formula for Washer Method | Axis of rotation is not a boundary of the region. | ![]() | 38 |
5921716931 | Inverse Tangent Antiderivative | ![]() | 39 | |
5921716932 | Inverse Sine Antiderivative | ![]() | 40 | |
5921716933 | Derivative of e^(u(x)) | ![]() | 41 | |
5921716935 | Derivative of ln(u) | u'/u | 42 | |
5921716936 | Antiderivative of f(x) from [a,b] | ![]() | 43 | |
5921716937 | Opposite Antiderivatives | ![]() | 44 | |
5921716938 | Antiderivative of xⁿ | ![]() | 45 | |
5921716939 | Adding or subtracting antiderivatives | ![]() | 46 | |
5921716940 | Constants in integrals | ![]() | 47 | |
5921716941 | Identity function | D: (-∞,+∞) R: (-∞,+∞) | ![]() | 48 |
5921716942 | f(x) = x² | D: (-∞,+∞) R: (o,+∞) | ![]() | 49 |
5921716943 | f(x) = x³ | D: (-∞,+∞) R: (-∞,+∞) | ![]() | 50 |
5921716944 | f(x) =1/x | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | ![]() | 51 |
5921716945 | f(x) =√x | D: (0,+∞) R: (0,+∞) | ![]() | 52 |
5921716946 | f(x) = e^x | D: (-∞,+∞) R: (0,+∞) | ![]() | 53 |
5921716947 | f(x) = ln (x) | D: (0,+∞) R: (-∞,+∞) | ![]() | 54 |
5921716948 | Sine function | D: (-∞,+∞) R: [-1,1] | ![]() | 55 |
5921716949 | Cosine function | D: (-∞,+∞) R: [-1,1] | ![]() | 56 |
5921716950 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | ![]() | 57 |
6592119959 | f(x) = √(a²-x²) | top half of circle with radius a and center (0,0) | 58 | |
5921716953 | Given f(x): Is f continuous @ C Is f' continuous @ C | Yes lim+=lim-=f(c) No, f'(c) doesn't exist because of cusp | ![]() | 59 |
5921716954 | Given f'(x): Is f continuous @ c? Is there an inflection point on f @ C? | This is a graph of f'(x). Since f'(C) exists, differentiability implies continuouity, so Yes.
Yes f' decreases on X | ![]() | 60 |
6772869073 | The derivative of position | velocity | 61 | |
6772869108 | The derivative of velocity | acceleration | 62 | |
6772873195 | A particle is speeding up if | velocity and acceleration have the same sign | 63 | |
6772876486 | A particle is slowing down if | velocity and acceleration have opposite signs | 64 | |
6773304653 | Slope of tangent line to f(x) at x = c | f'(c) | 65 | |
6773416318 | Area of a circle | ![]() | 66 | |
6773419037 | Area of a trapezoid | A=1/2h(b1+b2) | 67 |