AP Calculus AB, calculus terms and theorems
4368164005 | 1 | ![]() | 0 | |
4368164006 | 0 | ![]() | 1 | |
4368164007 | Squeeze Theorem | ![]() | 2 | |
4368164008 | f is continuous at x=c if... | ![]() | 3 | |
4368164009 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | 4 | |
4368164010 | Global Definition of a Derivative | ![]() | 5 | |
4368164011 | Alternative Definition of a Derivative | f '(x) is the limit of the following difference quotient as x approaches c | ![]() | 6 |
4368164012 | nx^(n-1) | ![]() | 7 | |
4368164013 | 1 | ![]() | 8 | |
4368164014 | cf'(x) | ![]() | 9 | |
4368164015 | f'(x)+g'(x) | ![]() | 10 | |
4368164016 | The position function OR s(t) with constant acceleration of -32ft/s^2 | ![]() | 11 | |
4368164017 | f'(x)-g'(x) | ![]() | 12 | |
4368164018 | uvw'+uv'w+u'vw | ![]() | 13 | |
4368164019 | cos(x) | ![]() | 14 | |
4368164020 | -sin(x) | ![]() | 15 | |
4368164021 | sec²(x) | ![]() | 16 | |
4368164022 | -csc²(x) | ![]() | 17 | |
4368164023 | sec(x)tan(x) | ![]() | 18 | |
4368164024 | dy/dx | ![]() | 19 | |
4368164025 | f'(g(x))g'(x) | ![]() | 20 | |
4368164026 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | 21 | |
4368164027 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | 22 | |
4368164028 | Rolle's Theorem | Let f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval). | 23 | |
4368164029 | Mean Value Theorem for Derivatives | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | ![]() | 24 |
4368164030 | First Derivative Test for local extrema | ![]() | 25 | |
4368164031 | Point of inflection at x=k | ![]() | 26 | |
4368164032 | 2nd derivative test | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | ![]() | 27 |
4368164033 | Horizontal Asymptote | ![]() | 28 | |
4368164034 | L'Hopital's Rule | ![]() | 29 | |
4368164035 | x+c | ![]() | 30 | |
4368164036 | sin(x)+C | ![]() | 31 | |
4368164037 | -cos(x)+C | ![]() | 32 | |
4368164038 | tan(x)+C | ![]() | 33 | |
4368164039 | -cot(x)+C | ![]() | 34 | |
4368164040 | sec(x)+C | ![]() | 35 | |
4368164041 | -csc(x)+C | ![]() | 36 | |
4368164042 | Fundamental Theorem of Calculus #1 | The definite integral of a rate of change is the total change in the original function. | ![]() | 37 |
4368164043 | Fundamental Theorem of Calculus #2 | ![]() | 38 | |
4368164044 | Mean Value Theorem for integrals or the average value of a functions | ![]() | 39 | |
4368164045 | ln(x)+C | ![]() | 40 | |
4368164046 | -ln(cosx)+C = ln(secx)+C | hint: tanu = sinu/cosu | ![]() | 41 |
4368164047 | ln(sinx)+C = -ln(cscx)+C | ![]() | 42 | |
4368164048 | ln(secx+tanx)+C = -ln(secx-tanx)+C | ![]() | 43 | |
4368164049 | ln(cscx+cotx)+C = -ln(cscx-cotx)+C | ![]() | 44 | |
4368164050 | If f and g are inverses of each other, g'(x) | ![]() | 45 | |
4368164051 | Exponential growth (use N= ) | ![]() | 46 | |
4368164052 | Area under a curve | ![]() | 47 | |
4368164053 | Formula for Disk Method | Axis of rotation is a boundary of the region. | ![]() | 48 |
4368164054 | Formula for Washer Method | Axis of rotation is not a boundary of the region. | ![]() | 49 |
4368164055 | Inverse Secant Antiderivative | ![]() | 50 | |
4368164056 | Inverse Tangent Antiderivative | ![]() | 51 | |
4368164057 | Inverse Sine Antiderivative | ![]() | 52 | |
4368164058 | Derivative of eⁿ | ![]() | 53 | |
4368164059 | ln(a)*aⁿ+C | ![]() | 54 | |
4368164060 | Derivative of ln(u) | ![]() | 55 | |
4368164061 | Antiderivative of f(x) from [a,b] | ![]() | 56 | |
4368164062 | Opposite Antiderivatives | ![]() | 57 | |
4368164063 | Antiderivative of xⁿ | ![]() | 58 | |
4368164064 | Adding or subtracting antiderivatives | ![]() | 59 | |
4368164065 | Constants in integrals | ![]() | 60 | |
4368164066 | Identity function | D: (-∞,+∞) R: (-∞,+∞) | ![]() | 61 |
4368164067 | Quadratic function | D: (-∞,+∞) R: (o,+∞) | ![]() | 62 |
4368164068 | Cubic function | D: (-∞,+∞) R: (-∞,+∞) | ![]() | 63 |
4368164069 | Reciprocal function | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | ![]() | 64 |
4368164070 | Square root function | D: (0,+∞) R: (0,+∞) | ![]() | 65 |
4368164071 | Exponential function | D: (-∞,+∞) R: (0,+∞) | ![]() | 66 |
4368164072 | Natural log function | D: (0,+∞) R: (-∞,+∞) | ![]() | 67 |
4368164073 | Sine function | D: (-∞,+∞) R: [-1,1] | ![]() | 68 |
4368164074 | Cosine function | D: (-∞,+∞) R: [-1,1] | ![]() | 69 |
4368164075 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | ![]() | 70 |
4368164076 | Greatest integer function | D: (-∞,+∞) R: (-∞,+∞) | ![]() | 71 |
4368164077 | Logistic function | D: (-∞,+∞) R: (0, 1) | ![]() | 72 |
4368164078 | Given f(x): Is f continuous @ C Is f' continuous @ C | Yes lim+=lim-=f(c) No, f'(c) doesn't exist because of cusp | ![]() | 73 |
4368164079 | Given f'(x): Is f continuous @ c? Is there an inflection point on f @ C? | This is a graph of f'(x). Since f'(C) exists, differentiability implies continuouity, so Yes.
Yes f' decreases on X | ![]() | 74 |