AP Notes, Outlines, Study Guides, Vocabulary, Practice Exams and more!

Calculus Flashcards

Terms : Hide Images
124141198810
124141198901
1241411990Squeeze Theorem2
1241411991f is continuous at x=c if...3
1241411992Intermediate Value TheoremIf f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k4
1241411993Global Definition of a Derivative5
1241411994Alternative Definition of a Derivativef '(x) is the limit of the following difference quotient as x approaches c6
1241411995nx^(n-1)7
124141199618
1241411997cf'(x)9
1241411998f'(x)+g'(x)10
1241411999The position function OR s(t)11
1241412000f'(x)-g'(x)12
1241412001uvw'+uv'w+u'vw13
1241412002cos(x)14
1241412003-sin(x)15
1241412004sec²(x)16
1241412005-csc²(x)17
1241412006sec(x)tan(x)18
1241412007dy/dx19
1241412008f'(g(x))g'(x)20
1241412009Extreme Value TheoremIf f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval.21
1241412010Critical NumberIf f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined)22
1241412011Rolle's TheoremLet f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval).23
1241412012Mean Value TheoremThe instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line.24
1241412013First Derivative Test for local extrema25
1241412014Point of inflection at x=k26
1241412015Combo Test for local extremaIf f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c.27
1241412016Horizontal Asymptote28
1241412017L'Hopital's Rule29
1241412018x+c30
1241412019sin(x)+C31
1241412020-cos(x)+C32
1241412021tan(x)+C33
1241412022-cot(x)+C34
1241412023sec(x)+C35
1241412024-csc(x)+C36
1241412025Fundamental Theorem of Calculus #1The definite integral of a rate of change is the total change in the original function.37
1241412026Fundamental Theorem of Calculus #238
1241412027Mean Value Theorem for integrals or the average value of a functions39
1241412028ln(x)+C40
1241412029-ln(cosx)+C = ln(secx)+Chint: tanu = sinu/cosu41
1241412030ln(sinx)+C = -ln(cscx)+C42
1241412031ln(secx+tanx)+C = -ln(secx-tanx)+C43
1241412032ln(cscx+cotx)+C = -ln(cscx-cotx)+C44
1241412033If f and g are inverses of each other, g'(x)45
1241412034Exponential growth (use N= )46
1241412035Area under a curve47
1241412036Formula for Disk MethodAxis of rotation is a boundary of the region.48
1241412037Formula for Washer MethodAxis of rotation is not a boundary of the region.49
1241412038Inverse Secant Antiderivative50
1241412039Inverse Tangent Antiderivative51
1241412040Inverse Sine Antiderivative52
1241412041Derivative of eⁿ53
1241412042ln(a)*aⁿ+C54
1241412043Derivative of ln(u)55
1241412044Antiderivative of f(x) from [a,b]56
1241412045Opposite Antiderivatives57
1241412046Antiderivative of xⁿ58
1241412047Adding or subtracting antiderivatives59
1241412048Constants in integrals60
1241412049Identity functionD: (-∞,+∞) R: (-∞,+∞)61
1241412050Squaring functionD: (-∞,+∞) R: (o,+∞)62
1241412051Cubing functionD: (-∞,+∞) R: (-∞,+∞)63
1241412052Reciprocal functionD: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero64
1241412053Square root functionD: (0,+∞) R: (0,+∞)65
1241412054Exponential functionD: (-∞,+∞) R: (0,+∞)66
1241412055Natural log functionD: (0,+∞) R: (-∞,+∞)67
1241412056Sine functionD: (-∞,+∞) R: [-1,1]68
1241412057Cosine functionD: (-∞,+∞) R: [-1,1]69
1241412058Absolute value functionD: (-∞,+∞) R: [0,+∞)70
1241412059Logistic functionD: (-∞,+∞) R: (0, 1)71
1241412060cos(π/6)√3/272
1241412061cos(π/4)√2/273
1241412062cos(π/3)1/274
1241412063cos(π/2)075
1241412064cos(2π/3)−1/276
1241412065cos(3π/4)−√2/277
1241412066cos(5π/6)−√3/278
1241412067cos(π)−179
1241412068cos(7π/6)−√3/280
1241412069cos(5π/4)−√2/281
1241412070cos(4π/3)−1/282
1241412071cos(3π/2)083
1241412072cos(5π/3)1/284
1241412073cos(7π/4)√2/285
1241412074cos(11π/6)√3/286
1241412075cos(2π)187
1241412076sin(π/6)1/288
1241412077sin(π/4)√2/289
1241412078sin(π/3)√3/290
1241412079sin(π/2)191
1241412080sin(2π/3)√3/292
1241412081sin(3π/4)√2/293
1241412082sin(5π/6)1/294
1241412083sin(π)095
1241412084sin(7π/6)−1/296
1241412085sin(5π/4)−√2/297
1241412086sin(4π/3)−√3/298
1241412087sin(3π/2)−199
1241412088sin(5π/3)−√3/2100
1241412089sin(7π/4)−√2/2101
1241412090sin(11π/6)−1/2102
1241412091sin(2π)0103
1241412092f(x) = e^(x-2)Asymptote: y=0 Domain: (-∞, ∞)104
1241412093f(x)=ln(x-2)Asymptote: x=2 Domain: (2, ∞)105
1241412094f(x)=ln(-x)Asymptote: x=0 Domain: (-∞, 0)106
1241412095f(x)=e^(x+2)Asymptote: y=0 Domain: (-∞, ∞)107
1241412096f(x)= -2+lnxAsymptote: x=0 Domain: (0, ∞)108
1241412097f(x)=-lnxAsymptote: x=0 Domain: (0, ∞)109
1241412098f(x) = e^(x) +2Asymptote: y=2 Domain: (-∞, ∞)110
1241412099f(x)=ln(x+2)Asymptote: x=-2 Domain: (-2, ∞)111
1241412100What does the graph y = sin(x) look like?112
1241412101What does the graph y = cos(x) look like?113
1241412102What does the graph y = tan(x) look like?114
1241412103What does the graph y = csc(x) look like?115
1241412104What does the graph y = sec(x) look like?116
1241412105What does the graph y = cot(x) look like?117
1241412106d/dx[e^x]=e^x118
1241412107d/dx[a^x]=a^x*lna119
1241412108d/dx[e^g(x)]=g'(x)e^g(x)120
1241412109d/dx[a^g(x)]=g'(x)a^g(x)lna121
1241412110d/dx[cos⁻¹x]=-1/√(1-x^2)122
1241412111d/dx[sin⁻¹x]=1/√(1-x^2)123
1241412112d/dx[tan⁻¹x]=1/(1+x^2)124
1241412113d/dx[tanx]=sec²x125
1241412114d/dx[secx]=secxtanx126
1241412115d/dx[cscx]=-cscxcotx127
1241412116d/dx[cotx]=-csc²x128
1241412117∫e^xdx=e^x+C129
1241412118∫a^xdx=(a^x)/lna+C130
1241412119∫1/xdx=ln|x|+C131
1241412120∫1/(1+x^2)dx=tan⁻¹x+C132
1241412121∫1/(a^2+x^2)dx=(1/a)(tan⁻¹(x/a)+C133
1241412122∫1/√(1-x^2)dx=sin⁻¹x+C134
1241412123∫tanxdx=ln|secx|+C135
1241412124Trig Identity: 1=cos²x+sin²x136
1241412125Trig Identity: sec²x=tan²x+1137
1241412126Trig Identity: cos²x=½(1+cos(2x))138
1241412127Trig Identity: sin²x=½(1-cos(2x))139
1241412128Trig Identity: sin(2x)=2sinxcosx140
1241412129Trig Identity: cos(2x)=1-2sin²x = 2cos²x-1141
1241412130Integration by Parts: Choice of uI = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x142
1241412131∫secxdx=ln|secx+tanx|+C143
1241412132What does the graph y = sin(x) look like?144
1241412133What does the graph y = cos(x) look like?145
1241412134What does the graph y = tan(x) look like?146
1241412135What does the graph y = csc(x) look like?147
1241412136What does the graph y = sec(x) look like?148
1241412137What does the graph y = cot(x) look like?149
1241412138d/dx[e^x]=e^x150
1241412139d/dx[a^x]=a^x*lna151
1241412140d/dx[e^g(x)]=g'(x)e^g(x)152
1241412141d/dx[a^g(x)]=g'(x)a^g(x)lna153
1241412142d/dx[cos⁻¹x]=-1/√(1-x^2)154
1241412143d/dx[sin⁻¹x]=1/√(1-x^2)155
1241412144d/dx[tan⁻¹x]=1/(1+x^2)156
1241412145d/dx[tanx]=sec²x157
1241412146d/dx[secx]=secxtanx158
1241412147d/dx[cscx]=-cscxcotx159
1241412148d/dx[cotx]=-csc²x160
1241412149∫e^xdx=e^x+C161
1241412150∫a^xdx=(a^x)/lna+C162
1241412151∫1/xdx=ln|x|+C163
1241412152∫1/(1+x^2)dx=tan⁻¹x+C164
1241412153∫1/(a^2+x^2)dx=(1/a)(tan⁻¹(x/a)+C165
1241412154∫1/√(1-x^2)dx=sin⁻¹x+C166
1241412155∫tanxdx=ln|secx|+C167
1241412156Trig Identity: 1=cos²x+sin²x168
1241412157Trig Identity: sec²x=tan²x+1169
1241412158Trig Identity: cos²x=½(1+cos(2x))170
1241412159Trig Identity: sin²x=½(1-cos(2x))171
1241412160Trig Identity: sin(2x)=2sinxcosx172
1241412161Trig Identity: cos(2x)=1-2sin²x = 2cos²x-1173
1241412162Integration by Parts: Choice of uI = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x174
1241412163∫secxdx=ln|secx+tanx|+C175

Need Help?

We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.

For general help, questions, and suggestions, try our dedicated support forums.

If you need to contact the Course-Notes.Org web experience team, please use our contact form.

Need Notes?

While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!