AP Notes, Outlines, Study Guides, Vocabulary, Practice Exams and more!

Calculus Review For AP Exam Flashcards

AP Calculus Review For Exam

Terms : Hide Images
633949014510
633949014601
6339490147Squeeze Theorem2
6339490148f is continuous at x=c if...3
6339490149Intermediate Value TheoremIf f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k4
6339490150Global Definition of a Derivative5
6339490151Alternative Definition of a Derivativef '(x) is the limit of the following difference quotient as x approaches c6
6339490152nx^(n-1)7
633949015318
6339490154cf'(x)9
6339490155f'(x)+g'(x)10
6339490156The position function OR s(t)11
6339490157f'(x)-g'(x)12
6339490158uvw'+uv'w+u'vw13
6339490159cos(x)14
6339490160-sin(x)15
6339490161sec²(x)16
6339490162-csc²(x)17
6339490163sec(x)tan(x)18
6339490164dy/dx19
6339490165f'(g(x))g'(x)20
6339490166Extreme Value TheoremIf f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval.21
6339490167Critical NumberIf f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined)22
6339490168Rolle's TheoremLet f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval).23
6339490169Mean Value TheoremThe instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line.24
6339490170First Derivative Test for local extrema25
6339490171Point of inflection at x=k26
6339490172Combo Test for local extremaIf f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c.27
6339490173Horizontal Asymptote28
6339490174L'Hopital's Rule29
6339490175x+c30
6339490176sin(x)+C31
6339490177-cos(x)+C32
6339490178tan(x)+C33
6339490179-cot(x)+C34
6339490180sec(x)+C35
6339490181-csc(x)+C36
6339490182Fundamental Theorem of Calculus #1The definite integral of a rate of change is the total change in the original function.37
6339490183Fundamental Theorem of Calculus #238
6339490184Mean Value Theorem for integrals or the average value of a functions39
6339490185ln(x)+C40
6339490186-ln(cosx)+C = ln(secx)+Chint: tanu = sinu/cosu41
6339490187ln(sinx)+C = -ln(cscx)+C42
6339490188ln(secx+tanx)+C = -ln(secx-tanx)+C43
6339490189ln(cscx+cotx)+C = -ln(cscx-cotx)+C44
6339490190If f and g are inverses of each other, g'(x)45
6339490191Exponential growth (use N= )46
6339490192Area under a curve47
6339490193Formula for Disk MethodAxis of rotation is a boundary of the region.48
6339490194Formula for Washer MethodAxis of rotation is not a boundary of the region.49
6339490195Inverse Secant Antiderivative50
6339490196Inverse Tangent Antiderivative51
6339490197Inverse Sine Antiderivative52
6339490198Derivative of eⁿ53
6339490199ln(a)*aⁿ+C54
6339490200Derivative of ln(u)55
6339490201Antiderivative of f(x) from [a,b]56
6339490202Opposite Antiderivatives57
6339490203Antiderivative of xⁿ58
6339490204Adding or subtracting antiderivatives59
6339490205Constants in integrals60
6339490206Identity functionD: (-∞,+∞) R: (-∞,+∞)61
6339490207Squaring functionD: (-∞,+∞) R: (o,+∞)62
6339490208Cubing functionD: (-∞,+∞) R: (-∞,+∞)63
6339490209Reciprocal functionD: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero64
6339490210Square root functionD: (0,+∞) R: (0,+∞)65
6339490211Exponential functionD: (-∞,+∞) R: (0,+∞)66
6339490212Natural log functionD: (0,+∞) R: (-∞,+∞)67
6339490213Sine functionD: (-∞,+∞) R: [-1,1]68
6339490214Cosine functionD: (-∞,+∞) R: [-1,1]69
6339490215Absolute value functionD: (-∞,+∞) R: [0,+∞)70
6339490216Logistic functionD: (-∞,+∞) R: (0, 1)71
6339490217cos(π/6)√3/272
6339490218cos(π/4)√2/273
6339490219cos(π/3)1/274
6339490220cos(π/2)075
6339490221cos(2π/3)−1/276
6339490222cos(3π/4)−√2/277
6339490223cos(5π/6)−√3/278
6339490224cos(π)−179
6339490225cos(7π/6)−√3/280
6339490226cos(5π/4)−√2/281
6339490227cos(4π/3)−1/282
6339490228cos(3π/2)083
6339490229cos(5π/3)1/284
6339490230cos(7π/4)√2/285
6339490231cos(11π/6)√3/286
6339490232cos(2π)187
6339490233sin(π/6)1/288
6339490234sin(π/4)√2/289
6339490235sin(π/3)√3/290
6339490236sin(π/2)191
6339490237sin(2π/3)√3/292
6339490238sin(3π/4)√2/293
6339490239sin(5π/6)1/294
6339490240sin(π)095
6339490241sin(7π/6)−1/296
6339490242sin(5π/4)−√2/297
6339490243sin(4π/3)−√3/298
6339490244sin(3π/2)−199
6339490245sin(5π/3)−√3/2100
6339490246sin(7π/4)−√2/2101
6339490247sin(11π/6)−1/2102
6339490248sin(2π)0103
6339490249f(x) = e^(x-2)Asymptote: y=0 Domain: (-∞, ∞)104
6339490250f(x)=ln(x-2)Asymptote: x=2 Domain: (2, ∞)105
6339490251f(x)=ln(-x)Asymptote: x=0 Domain: (-∞, 0)106
6339490252f(x)=e^(x+2)Asymptote: y=0 Domain: (-∞, ∞)107
6339490253f(x)= -2+lnxAsymptote: x=0 Domain: (0, ∞)108
6339490254f(x)=-lnxAsymptote: x=0 Domain: (0, ∞)109
6339490255f(x) = e^(x) +2Asymptote: y=2 Domain: (-∞, ∞)110
6339490256f(x)=ln(x+2)Asymptote: x=-2 Domain: (-2, ∞)111
6339490257What does the graph y = sin(x) look like?112
6339490258What does the graph y = cos(x) look like?113
6339490259What does the graph y = tan(x) look like?114
6339490260What does the graph y = csc(x) look like?115
6339490261What does the graph y = sec(x) look like?116
6339490262What does the graph y = cot(x) look like?117
6339490263d/dx[e^x]=e^x118
6339490264d/dx[a^x]=a^x*lna119
6339490265d/dx[e^g(x)]=g'(x)e^g(x)120
6339490266d/dx[a^g(x)]=g'(x)a^g(x)lna121
6339490267d/dx[cos⁻¹x]=-1/√(1-x^2)122
6339490268d/dx[sin⁻¹x]=1/√(1-x^2)123
6339490269d/dx[tan⁻¹x]=1/(1+x^2)124
6339490270d/dx[tanx]=sec²x125
6339490271d/dx[secx]=secxtanx126
6339490272d/dx[cscx]=-cscxcotx127
6339490273d/dx[cotx]=-csc²x128
6339490274∫e^xdx=e^x+C129
6339490275∫a^xdx=(a^x)/lna+C130
6339490276∫1/xdx=ln|x|+C131
6339490277∫1/(1+x^2)dx=tan⁻¹x+C132
6339490278∫1/(a^2+x^2)dx=(1/a)(tan⁻¹(x/a)+C133
6339490279∫1/√(1-x^2)dx=sin⁻¹x+C134
6339490280∫tanxdx=ln|secx|+C135
6339490281Trig Identity: 1=cos²x+sin²x136
6339490282Trig Identity: sec²x=tan²x+1137
6339490283Trig Identity: cos²x=½(1+cos(2x))138
6339490284Trig Identity: sin²x=½(1-cos(2x))139
6339490285Trig Identity: sin(2x)=2sinxcosx140
6339490286Trig Identity: cos(2x)=1-2sin²x = 2cos²x-1141
6339490287Integration by Parts: Choice of uI = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x142
6339490288∫secxdx=ln|secx+tanx|+C143
6339490289What does the graph y = sin(x) look like?144
6339490290What does the graph y = cos(x) look like?145
6339490291What does the graph y = tan(x) look like?146
6339490292What does the graph y = csc(x) look like?147
6339490293What does the graph y = sec(x) look like?148
6339490294What does the graph y = cot(x) look like?149
6339490295d/dx[e^x]=e^x150
6339490296d/dx[a^x]=a^x*lna151
6339490297d/dx[e^g(x)]=g'(x)e^g(x)152
6339490298d/dx[a^g(x)]=g'(x)a^g(x)lna153
6339490299d/dx[cos⁻¹x]=-1/√(1-x^2)154
6339490300d/dx[sin⁻¹x]=1/√(1-x^2)155
6339490301d/dx[tan⁻¹x]=1/(1+x^2)156
6339490302d/dx[tanx]=sec²x157
6339490303d/dx[secx]=secxtanx158
6339490304d/dx[cscx]=-cscxcotx159
6339490305d/dx[cotx]=-csc²x160
6339490306∫e^xdx=e^x+C161
6339490307∫a^xdx=(a^x)/lna+C162
6339490308∫1/xdx=ln|x|+C163
6339490309∫1/(1+x^2)dx=tan⁻¹x+C164
6339490310∫1/(a^2+x^2)dx=(1/a)(tan⁻¹(x/a)+C165
6339490311∫1/√(1-x^2)dx=sin⁻¹x+C166
6339490312∫tanxdx=ln|secx|+C167
6339490313Trig Identity: 1=cos²x+sin²x168
6339490314Trig Identity: sec²x=tan²x+1169
6339490315Trig Identity: cos²x=½(1+cos(2x))170
6339490316Trig Identity: sin²x=½(1-cos(2x))171
6339490317Trig Identity: sin(2x)=2sinxcosx172
6339490318Trig Identity: cos(2x)=1-2sin²x = 2cos²x-1173
6339490319Integration by Parts: Choice of uI = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x174
6339490320∫secxdx=ln|secx+tanx|+C175

Need Help?

We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.

For general help, questions, and suggestions, try our dedicated support forums.

If you need to contact the Course-Notes.Org web experience team, please use our contact form.

Need Notes?

While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!