AP Notes, Outlines, Study Guides, Vocabulary, Practice Exams and more!

ch 11 Cell communication

Terms : Hide Images
direct contact local signaling endocrine signaling
gap junctions between animal cells plasmodesmata between plant cells cell-cell recognition
paracrine signaling synaptic signaling
A secreting cell acts on nearby target cells by discharging molecules of a local regulator into the extracellular fluid.
influence nearby cells
A nerve cell releases neurotransmitter molecules into a synapse, stimulating the target cell.
long distance Specialized endocrine cells secrete hormones into body fluids, often blood. Hormones reach virtually all body cells, but are bound only by some cells.
reception transduction response
This is when the target cell detects a signaling molecule coming from outside the cell. A chemical signal is "detected" when the ligand (signaling moleclue) binds to a receptor protein located at the cell's surface or inside the cell (for water-soluble signal molecules). A shape change in a receptor is often the inital transduction of the signal.
G-protein coupled receptors receptor tyrosine kinases (attach phosphates to tyrosine amino acids on receptors to activate them) ligand-gated ion channels (common on nerve cells)
When GDP is bound to the G protein, G protein is inactive. When the appropiate signaling molecule binds to the extracellular side of the receptor, the receptor is activated and changes shape. Its cytoplasmic side then binds an inactive G protein, causing GTP to displace the GDP. This activates the G protein. The activated G protein dissociates from the receptor, diffuses along the membrane, and then binds to an enzyme, altering the enzyme's shape and activity. Once activated, the enzyme can trigger a cellular response along the signal transduction pathway. Then the G protein hydrolyzes its bound GTP to GDP. Now inactive again, G protein leaves the enzyme and returns to its original state.
More than one signal transduction pathway can be triggered at once. The ability of a single lingand-binding event to trigger many pathways is the difference between receptor tyrosine kinases and G protein-coupled receptors. Before signaling molecule binds, the receptors exist as monomers, each with an extracellular ligand-binding site. The binding of a signaling molecule causes two receptor monomers to associate closely with each other forming a dimer. The dimerization activates the tyrosine kinase region of each monomer, adding a phosphate from an ATP molecule to a tyrosine on the tail. Now that the receptor is fully activated, it is recognized by specific relay proteins inside the cell. Each protein binds to a specific phosphorylated tyrosine, undergoing a resulting structural change that activates the bound protein. Each activated protein triggers a transduction pathway, leading to a cellular response.
The gate in the ligand-gated ion cannel receptor remains closed until a ligand binds to the receptor. When the ligand binds to the receptor and the gate opens, specific ions can flow through the channel and rapidly change the concentration of that particular ion inside the cell. This change may diretly affect the activity of the cell in some way. When the ligand dissociates from this receptor the gate closes and ions no longer enter the cell.
These are found in cytoplasm or nucleus of target cells. They bind to hydrophobic molecules such as lipids or small molecules that diffuse through cell membrane Often act as a transcription factor
Succession of kinase activation that causes cellular response driven by phosphorylation: The binding of the signaling molecule changes the receptor protein in some way, initating the process of transduction and changing the shape of the protein. Many signal transduction pathways include phosphorylation cascades and protein phosphatases. The balance between the two regulates the activity of proteins. Second messengers are also often involved in transduction process.
enzyme that transfers a phosphate group to a protein
a series of protein kinases each add a phosphate group to the next one in line, activating the protein. This often amplifies signal because it activates large number of proteins.
Dephosphorylate (deactivate) phosphate proteins making them inactive
small molecules or ions that are a part of a signal pathway Because second messengers are small and water-soluble, they can readily spread throughout the cell by diffusion.
cAMP (cyclic AMP) Ca+2 IP3
molecules that are converted from ATP by adenylyl cyclase
activated IP3 releases Ca2+. Ca2+ activates proteins
promotes protein production by activating transciption factors or activating proteins in the cytoplasm A signaling pathway with lots of steps between the initail signaling at the cell surface and the cell's response results in signal amplification. The response is specific to cells & receptor molecules scaffolding proteins increase signal transduction.
large response from a single signal molecule
speeds signal transduction
programmed cell death signal pathways activate proteases and nucleases (breaks down nucleic acid) that cause cell death
a secreted chemical that are formed in body fluids acts on specific target cells changes the taget cell's functioning
a series of steps linking a mechanical, chemical, or electrical stimulus to a specific cellular response
activation of protein by adding one or more phosphate group to it.
a molecule that specifically binds to another molecule, often a larger one
cAMP, Ca 2+
Ca2+, IP3

Need Help?

We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.

For general help, questions, and suggestions, try our dedicated support forums.

If you need to contact the Course-Notes.Org web experience team, please use our contact form.

Need Notes?

While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!