AP Notes, Outlines, Study Guides, Vocabulary, Practice Exams and more!

Review for AP Exam Flashcards

AP Calculus Review For Exam

Terms : Hide Images
951893887310
951893887401
9518938875Squeeze Theorem2
9518938876f is continuous at x=c if...3
9518938936Intermediate Value TheoremIf f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k4
9518938877Global Definition of a Derivative5
9518938937Alternative Definition of a Derivativef '(x) is the limit of the following difference quotient as x approaches c6
9518938878nx^(n-1)7
951893887918
9518938880cf'(x)9
9518938881f'(x)+g'(x)10
9518938882The position function OR s(t)11
9518938883f'(x)-g'(x)12
9518938884uvw'+uv'w+u'vw13
9518938885cos(x)14
9518938886-sin(x)15
9518938887sec²(x)16
9518938888-csc²(x)17
9518938889sec(x)tan(x)18
9518938890dy/dx19
9518938891f'(g(x))g'(x)20
9518938938Extreme Value TheoremIf f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval.21
9518938939Critical NumberIf f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined)22
9518938940Rolle's TheoremLet f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval).23
9518938941Mean Value TheoremThe instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line.24
9518938892First Derivative Test for local extrema25
9518938893Point of inflection at x=k26
9518938942Combo Test for local extremaIf f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c.27
9518938894Horizontal Asymptote28
9518938895L'Hopital's Rule29
9518938896x+c30
9518938897sin(x)+C31
9518938898-cos(x)+C32
9518938899tan(x)+C33
9518938900-cot(x)+C34
9518938901sec(x)+C35
9518938902-csc(x)+C36
9518938943Fundamental Theorem of Calculus #1The definite integral of a rate of change is the total change in the original function.37
9518938903Fundamental Theorem of Calculus #238
9518938904Mean Value Theorem for integrals or the average value of a functions39
9518938905ln(x)+C40
9518938944-ln(cosx)+C = ln(secx)+Chint: tanu = sinu/cosu41
9518938906ln(sinx)+C = -ln(cscx)+C42
9518938907ln(secx+tanx)+C = -ln(secx-tanx)+C43
9518938908ln(cscx+cotx)+C = -ln(cscx-cotx)+C44
9518938909If f and g are inverses of each other, g'(x)45
9518938910Exponential growth (use N= )46
9518938911Area under a curve47
9518938945Formula for Disk MethodAxis of rotation is a boundary of the region.48
9518938946Formula for Washer MethodAxis of rotation is not a boundary of the region.49
9518938912Inverse Secant Antiderivative50
9518938913Inverse Tangent Antiderivative51
9518938914Inverse Sine Antiderivative52
9518938915Derivative of eⁿ53
9518938916ln(a)*aⁿ+C54
9518938917Derivative of ln(u)55
9518938918Antiderivative of f(x) from [a,b]56
9518938919Opposite Antiderivatives57
9518938920Antiderivative of xⁿ58
9518938921Adding or subtracting antiderivatives59
9518938922Constants in integrals60
9518938947Identity functionD: (-∞,+∞) R: (-∞,+∞)61
9518938948Squaring functionD: (-∞,+∞) R: (o,+∞)62
9518938949Cubic functionD: (-∞,+∞) R: (-∞,+∞)63
9518938950Reciprocal functionD: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero64
9518938951Square root functionD: (0,+∞) R: (0,+∞)65
9518938952Exponential functionD: (-∞,+∞) R: (0,+∞)66
9518938953Natural log functionD: (0,+∞) R: (-∞,+∞)67
9518938954Sine functionD: (-∞,+∞) R: [-1,1]68
9518938955Cosine functionD: (-∞,+∞) R: [-1,1]69
9518938956Absolute value functionD: (-∞,+∞) R: [0,+∞)70
9518938957Logistic functionD: (-∞,+∞) R: (0, 1)71
9518938958cos(π/6)√3/272
9518938959cos(π/4)√2/273
9518938960cos(π/3)1/274
9518938961cos(π/2)075
9518938962cos(2π/3)−1/276
9518938963cos(3π/4)−√2/277
9518938964cos(5π/6)−√3/278
9518938965cos(π)−179
9518938966cos(7π/6)−√3/280
9518938967cos(5π/4)−√2/281
9518938968cos(4π/3)−1/282
9518938969cos(3π/2)083
9518938970cos(5π/3)1/284
9518938971cos(7π/4)√2/285
9518938972cos(11π/6)√3/286
9518938973cos(2π)187
9518938974sin(π/6)1/288
9518938975sin(π/4)√2/289
9518938976sin(π/3)√3/290
9518938977sin(π/2)191
9518938978sin(2π/3)√3/292
9518938979sin(3π/4)√2/293
9518938980sin(5π/6)1/294
9518938981sin(π)095
9518938982sin(7π/6)−1/296
9518938983sin(5π/4)−√2/297
9518938984sin(4π/3)−√3/298
9518938985sin(3π/2)−199
9518938986sin(5π/3)−√3/2100
9518938987sin(7π/4)−√2/2101
9518938988sin(11π/6)−1/2102
9518938989sin(2π)0103
9518938990f(x) = e^(x-2)Asymptote: y=0 Domain: (-∞, ∞)104
9518938991f(x)=ln(x-2)Asymptote: x=2 Domain: (2, ∞)105
9518938992f(x)=ln(-x)Asymptote: x=0 Domain: (-∞, 0)106
9518938993f(x)=e^(x+2)Asymptote: y=0 Domain: (-∞, ∞)107
9518938994f(x)= -2+lnxAsymptote: x=0 Domain: (0, ∞)108
9518938995f(x)=-lnxAsymptote: x=0 Domain: (0, ∞)109
9518938996f(x) = e^(x) +2Asymptote: y=2 Domain: (-∞, ∞)110
9518938997f(x)=ln(x+2)Asymptote: x=-2 Domain: (-2, ∞)111
9518938923What does the graph y = sin(x) look like?112
9518938924What does the graph y = cos(x) look like?113
9518938925What does the graph y = tan(x) look like?114
9518938926What does the graph y = csc(x) look like?115
9518938927What does the graph y = sec(x) look like?116
9518938928What does the graph y = cot(x) look like?117
9518938998d/dx[e^x]=e^x118
9518938999d/dx[a^x]=a^x*lna119
9518939000d/dx[e^g(x)]=g'(x)e^g(x)120
9518939001d/dx[a^g(x)]=g'(x)a^g(x)lna121
9518939002d/dx[cos⁻¹x]=-1/√(1-x^2)122
9518939003d/dx[sin⁻¹x]=1/√(1-x^2)123
9518939004d/dx[tan⁻¹x]=1/(1+x^2)124
9518939005d/dx[tanx]=sec²x125
9518939006d/dx[secx]=secxtanx126
9518939007d/dx[cscx]=-cscxcotx127
9518939008d/dx[cotx]=-csc²x128
9518939009∫e^xdx=e^x+C129
9518939010∫a^xdx=(a^x)/lna+C130
9518939011∫1/xdx=ln|x|+C131
9518939012∫1/(1+x^2)dx=tan⁻¹x+C132
9518939013∫1/(a^2+x^2)dx=(1/a)(tan⁻¹(x/a)+C133
9518939014∫1/√(1-x^2)dx=sin⁻¹x+C134
9518939015∫tanxdx=ln|secx|+C135
9518939016Trig Identity: 1=cos²x+sin²x136
9518939017Trig Identity: sec²x=tan²x+1137
9518939018Trig Identity: cos²x=½(1+cos(2x))138
9518939019Trig Identity: sin²x=½(1-cos(2x))139
9518939020Trig Identity: sin(2x)=2sinxcosx140
9518939021Trig Identity: cos(2x)=1-2sin²x = 2cos²x-1141
9518939022Integration by Parts: Choice of uI = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x142
9518939023∫secxdx=ln|secx+tanx|+C143
9518938929What does the graph y = sin(x) look like?144
9518938930What does the graph y = cos(x) look like?145
9518938931What does the graph y = tan(x) look like?146
9518938932What does the graph y = csc(x) look like?147
9518938933What does the graph y = sec(x) look like?148
9518938934What does the graph y = cot(x) look like?149
9518939024d/dx[e^x]=e^x150
9518939025d/dx[a^x]=a^x*lna151
9518939026d/dx[e^g(x)]=g'(x)e^g(x)152
9518939027d/dx[a^g(x)]=g'(x)a^g(x)lna153
9518939028d/dx[cos⁻¹x]=-1/√(1-x^2)154
9518939029d/dx[sin⁻¹x]=1/√(1-x^2)155
9518939030d/dx[tan⁻¹x]=1/(1+x^2)156
9518939031d/dx[tanx]=sec²x157
9518939032d/dx[secx]=secxtanx158
9518939033d/dx[cscx]=-cscxcotx159
9518939034d/dx[cotx]=-csc²x160
9518939035∫e^xdx=e^x+C161
9518939036∫a^xdx=(a^x)/lna+C162
9518939037∫1/xdx=ln|x|+C163
9518939038∫1/(1+x^2)dx=tan⁻¹x+C164
9518939039∫1/(a^2+x^2)dx=(1/a)(tan⁻¹(x/a)+C165
9518939040∫1/√(1-x^2)dx=sin⁻¹x+C166
9518939041∫tanxdx=ln|secx|+C167
9518939042Trig Identity: 1=cos²x+sin²x168
9518939043Trig Identity: sec²x=tan²x+1169
9518939044Trig Identity: cos²x=½(1+cos(2x))170
9518939045Trig Identity: sin²x=½(1-cos(2x))171
9518939046Trig Identity: sin(2x)=2sinxcosx172
9518939047Trig Identity: cos(2x)=1-2sin²x = 2cos²x-1173
9518939048Integration by Parts: Choice of uI = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x174
9518939049∫secxdx=ln|secx+tanx|+C175

Need Help?

We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.

For general help, questions, and suggestions, try our dedicated support forums.

If you need to contact the Course-Notes.Org web experience team, please use our contact form.

Need Notes?

While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!