AP Calculus Review For Exam
9518938873 | 1 | ![]() | 0 | |
9518938874 | 0 | ![]() | 1 | |
9518938875 | Squeeze Theorem | ![]() | 2 | |
9518938876 | f is continuous at x=c if... | ![]() | 3 | |
9518938936 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | 4 | |
9518938877 | Global Definition of a Derivative | ![]() | 5 | |
9518938937 | Alternative Definition of a Derivative | f '(x) is the limit of the following difference quotient as x approaches c | ![]() | 6 |
9518938878 | nx^(n-1) | ![]() | 7 | |
9518938879 | 1 | ![]() | 8 | |
9518938880 | cf'(x) | ![]() | 9 | |
9518938881 | f'(x)+g'(x) | ![]() | 10 | |
9518938882 | The position function OR s(t) | ![]() | 11 | |
9518938883 | f'(x)-g'(x) | ![]() | 12 | |
9518938884 | uvw'+uv'w+u'vw | ![]() | 13 | |
9518938885 | cos(x) | ![]() | 14 | |
9518938886 | -sin(x) | ![]() | 15 | |
9518938887 | sec²(x) | ![]() | 16 | |
9518938888 | -csc²(x) | ![]() | 17 | |
9518938889 | sec(x)tan(x) | ![]() | 18 | |
9518938890 | dy/dx | ![]() | 19 | |
9518938891 | f'(g(x))g'(x) | ![]() | 20 | |
9518938938 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | 21 | |
9518938939 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | 22 | |
9518938940 | Rolle's Theorem | Let f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval). | 23 | |
9518938941 | Mean Value Theorem | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | ![]() | 24 |
9518938892 | First Derivative Test for local extrema | ![]() | 25 | |
9518938893 | Point of inflection at x=k | ![]() | 26 | |
9518938942 | Combo Test for local extrema | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | ![]() | 27 |
9518938894 | Horizontal Asymptote | ![]() | 28 | |
9518938895 | L'Hopital's Rule | ![]() | 29 | |
9518938896 | x+c | ![]() | 30 | |
9518938897 | sin(x)+C | ![]() | 31 | |
9518938898 | -cos(x)+C | ![]() | 32 | |
9518938899 | tan(x)+C | ![]() | 33 | |
9518938900 | -cot(x)+C | ![]() | 34 | |
9518938901 | sec(x)+C | ![]() | 35 | |
9518938902 | -csc(x)+C | ![]() | 36 | |
9518938943 | Fundamental Theorem of Calculus #1 | The definite integral of a rate of change is the total change in the original function. | ![]() | 37 |
9518938903 | Fundamental Theorem of Calculus #2 | ![]() | 38 | |
9518938904 | Mean Value Theorem for integrals or the average value of a functions | ![]() | 39 | |
9518938905 | ln(x)+C | ![]() | 40 | |
9518938944 | -ln(cosx)+C = ln(secx)+C | hint: tanu = sinu/cosu | ![]() | 41 |
9518938906 | ln(sinx)+C = -ln(cscx)+C | ![]() | 42 | |
9518938907 | ln(secx+tanx)+C = -ln(secx-tanx)+C | ![]() | 43 | |
9518938908 | ln(cscx+cotx)+C = -ln(cscx-cotx)+C | ![]() | 44 | |
9518938909 | If f and g are inverses of each other, g'(x) | ![]() | 45 | |
9518938910 | Exponential growth (use N= ) | ![]() | 46 | |
9518938911 | Area under a curve | ![]() | 47 | |
9518938945 | Formula for Disk Method | Axis of rotation is a boundary of the region. | ![]() | 48 |
9518938946 | Formula for Washer Method | Axis of rotation is not a boundary of the region. | ![]() | 49 |
9518938912 | Inverse Secant Antiderivative | ![]() | 50 | |
9518938913 | Inverse Tangent Antiderivative | ![]() | 51 | |
9518938914 | Inverse Sine Antiderivative | ![]() | 52 | |
9518938915 | Derivative of eⁿ | ![]() | 53 | |
9518938916 | ln(a)*aⁿ+C | ![]() | 54 | |
9518938917 | Derivative of ln(u) | ![]() | 55 | |
9518938918 | Antiderivative of f(x) from [a,b] | ![]() | 56 | |
9518938919 | Opposite Antiderivatives | ![]() | 57 | |
9518938920 | Antiderivative of xⁿ | ![]() | 58 | |
9518938921 | Adding or subtracting antiderivatives | ![]() | 59 | |
9518938922 | Constants in integrals | ![]() | 60 | |
9518938947 | Identity function | D: (-∞,+∞) R: (-∞,+∞) | ![]() | 61 |
9518938948 | Squaring function | D: (-∞,+∞) R: (o,+∞) | ![]() | 62 |
9518938949 | Cubic function | D: (-∞,+∞) R: (-∞,+∞) | ![]() | 63 |
9518938950 | Reciprocal function | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | ![]() | 64 |
9518938951 | Square root function | D: (0,+∞) R: (0,+∞) | ![]() | 65 |
9518938952 | Exponential function | D: (-∞,+∞) R: (0,+∞) | ![]() | 66 |
9518938953 | Natural log function | D: (0,+∞) R: (-∞,+∞) | ![]() | 67 |
9518938954 | Sine function | D: (-∞,+∞) R: [-1,1] | ![]() | 68 |
9518938955 | Cosine function | D: (-∞,+∞) R: [-1,1] | ![]() | 69 |
9518938956 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | ![]() | 70 |
9518938957 | Logistic function | D: (-∞,+∞) R: (0, 1) | ![]() | 71 |
9518938958 | cos(π/6) | √3/2 | 72 | |
9518938959 | cos(π/4) | √2/2 | 73 | |
9518938960 | cos(π/3) | 1/2 | 74 | |
9518938961 | cos(π/2) | 0 | 75 | |
9518938962 | cos(2π/3) | −1/2 | 76 | |
9518938963 | cos(3π/4) | −√2/2 | 77 | |
9518938964 | cos(5π/6) | −√3/2 | 78 | |
9518938965 | cos(π) | −1 | 79 | |
9518938966 | cos(7π/6) | −√3/2 | 80 | |
9518938967 | cos(5π/4) | −√2/2 | 81 | |
9518938968 | cos(4π/3) | −1/2 | 82 | |
9518938969 | cos(3π/2) | 0 | 83 | |
9518938970 | cos(5π/3) | 1/2 | 84 | |
9518938971 | cos(7π/4) | √2/2 | 85 | |
9518938972 | cos(11π/6) | √3/2 | 86 | |
9518938973 | cos(2π) | 1 | 87 | |
9518938974 | sin(π/6) | 1/2 | 88 | |
9518938975 | sin(π/4) | √2/2 | 89 | |
9518938976 | sin(π/3) | √3/2 | 90 | |
9518938977 | sin(π/2) | 1 | 91 | |
9518938978 | sin(2π/3) | √3/2 | 92 | |
9518938979 | sin(3π/4) | √2/2 | 93 | |
9518938980 | sin(5π/6) | 1/2 | 94 | |
9518938981 | sin(π) | 0 | 95 | |
9518938982 | sin(7π/6) | −1/2 | 96 | |
9518938983 | sin(5π/4) | −√2/2 | 97 | |
9518938984 | sin(4π/3) | −√3/2 | 98 | |
9518938985 | sin(3π/2) | −1 | 99 | |
9518938986 | sin(5π/3) | −√3/2 | 100 | |
9518938987 | sin(7π/4) | −√2/2 | 101 | |
9518938988 | sin(11π/6) | −1/2 | 102 | |
9518938989 | sin(2π) | 0 | 103 | |
9518938990 | f(x) = e^(x-2) | Asymptote: y=0 Domain: (-∞, ∞) | ![]() | 104 |
9518938991 | f(x)=ln(x-2) | Asymptote: x=2 Domain: (2, ∞) | ![]() | 105 |
9518938992 | f(x)=ln(-x) | Asymptote: x=0 Domain: (-∞, 0) | ![]() | 106 |
9518938993 | f(x)=e^(x+2) | Asymptote: y=0 Domain: (-∞, ∞) | ![]() | 107 |
9518938994 | f(x)= -2+lnx | Asymptote: x=0 Domain: (0, ∞) | ![]() | 108 |
9518938995 | f(x)=-lnx | Asymptote: x=0 Domain: (0, ∞) | ![]() | 109 |
9518938996 | f(x) = e^(x) +2 | Asymptote: y=2 Domain: (-∞, ∞) | ![]() | 110 |
9518938997 | f(x)=ln(x+2) | Asymptote: x=-2 Domain: (-2, ∞) | ![]() | 111 |
9518938923 | What does the graph y = sin(x) look like? | ![]() | 112 | |
9518938924 | What does the graph y = cos(x) look like? | ![]() | 113 | |
9518938925 | What does the graph y = tan(x) look like? | ![]() | 114 | |
9518938926 | What does the graph y = csc(x) look like? | ![]() | 115 | |
9518938927 | What does the graph y = sec(x) look like? | ![]() | 116 | |
9518938928 | What does the graph y = cot(x) look like? | ![]() | 117 | |
9518938998 | d/dx[e^x]= | e^x | 118 | |
9518938999 | d/dx[a^x]= | a^x*lna | 119 | |
9518939000 | d/dx[e^g(x)]= | g'(x)e^g(x) | 120 | |
9518939001 | d/dx[a^g(x)]= | g'(x)a^g(x)lna | 121 | |
9518939002 | d/dx[cos⁻¹x]= | -1/√(1-x^2) | 122 | |
9518939003 | d/dx[sin⁻¹x]= | 1/√(1-x^2) | 123 | |
9518939004 | d/dx[tan⁻¹x]= | 1/(1+x^2) | 124 | |
9518939005 | d/dx[tanx]= | sec²x | 125 | |
9518939006 | d/dx[secx]= | secxtanx | 126 | |
9518939007 | d/dx[cscx]= | -cscxcotx | 127 | |
9518939008 | d/dx[cotx]= | -csc²x | 128 | |
9518939009 | ∫e^xdx= | e^x+C | 129 | |
9518939010 | ∫a^xdx= | (a^x)/lna+C | 130 | |
9518939011 | ∫1/xdx= | ln|x|+C | 131 | |
9518939012 | ∫1/(1+x^2)dx= | tan⁻¹x+C | 132 | |
9518939013 | ∫1/(a^2+x^2)dx= | (1/a)(tan⁻¹(x/a)+C | 133 | |
9518939014 | ∫1/√(1-x^2)dx= | sin⁻¹x+C | 134 | |
9518939015 | ∫tanxdx= | ln|secx|+C | 135 | |
9518939016 | Trig Identity: 1= | cos²x+sin²x | 136 | |
9518939017 | Trig Identity: sec²x= | tan²x+1 | 137 | |
9518939018 | Trig Identity: cos²x= | ½(1+cos(2x)) | 138 | |
9518939019 | Trig Identity: sin²x= | ½(1-cos(2x)) | 139 | |
9518939020 | Trig Identity: sin(2x)= | 2sinxcosx | 140 | |
9518939021 | Trig Identity: cos(2x)= | 1-2sin²x = 2cos²x-1 | 141 | |
9518939022 | Integration by Parts: Choice of u | I = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x | 142 | |
9518939023 | ∫secxdx= | ln|secx+tanx|+C | 143 | |
9518938929 | What does the graph y = sin(x) look like? | ![]() | 144 | |
9518938930 | What does the graph y = cos(x) look like? | ![]() | 145 | |
9518938931 | What does the graph y = tan(x) look like? | ![]() | 146 | |
9518938932 | What does the graph y = csc(x) look like? | ![]() | 147 | |
9518938933 | What does the graph y = sec(x) look like? | ![]() | 148 | |
9518938934 | What does the graph y = cot(x) look like? | ![]() | 149 | |
9518939024 | d/dx[e^x]= | e^x | 150 | |
9518939025 | d/dx[a^x]= | a^x*lna | 151 | |
9518939026 | d/dx[e^g(x)]= | g'(x)e^g(x) | 152 | |
9518939027 | d/dx[a^g(x)]= | g'(x)a^g(x)lna | 153 | |
9518939028 | d/dx[cos⁻¹x]= | -1/√(1-x^2) | 154 | |
9518939029 | d/dx[sin⁻¹x]= | 1/√(1-x^2) | 155 | |
9518939030 | d/dx[tan⁻¹x]= | 1/(1+x^2) | 156 | |
9518939031 | d/dx[tanx]= | sec²x | 157 | |
9518939032 | d/dx[secx]= | secxtanx | 158 | |
9518939033 | d/dx[cscx]= | -cscxcotx | 159 | |
9518939034 | d/dx[cotx]= | -csc²x | 160 | |
9518939035 | ∫e^xdx= | e^x+C | 161 | |
9518939036 | ∫a^xdx= | (a^x)/lna+C | 162 | |
9518939037 | ∫1/xdx= | ln|x|+C | 163 | |
9518939038 | ∫1/(1+x^2)dx= | tan⁻¹x+C | 164 | |
9518939039 | ∫1/(a^2+x^2)dx= | (1/a)(tan⁻¹(x/a)+C | 165 | |
9518939040 | ∫1/√(1-x^2)dx= | sin⁻¹x+C | 166 | |
9518939041 | ∫tanxdx= | ln|secx|+C | 167 | |
9518939042 | Trig Identity: 1= | cos²x+sin²x | 168 | |
9518939043 | Trig Identity: sec²x= | tan²x+1 | 169 | |
9518939044 | Trig Identity: cos²x= | ½(1+cos(2x)) | 170 | |
9518939045 | Trig Identity: sin²x= | ½(1-cos(2x)) | 171 | |
9518939046 | Trig Identity: sin(2x)= | 2sinxcosx | 172 | |
9518939047 | Trig Identity: cos(2x)= | 1-2sin²x = 2cos²x-1 | 173 | |
9518939048 | Integration by Parts: Choice of u | I = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x | 174 | |
9518939049 | ∫secxdx= | ln|secx+tanx|+C | 175 |