AP Calculus AB, calculus terms and theorems
509430447 | 1 | 0 | ||
509430448 | 0 | 1 | ||
509430449 | Squeeze Theorem | 2 | ||
509430450 | f is continuous at x=c if... | 3 | ||
509430451 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | 4 | |
509430452 | Global Definition of a Derivative | 5 | ||
509430453 | Alternative Definition of a Derivative | f '(x) is the limit of the following difference quotient as x approaches c | 6 | |
509430454 | nx^(n-1) | 7 | ||
509430455 | 1 | 8 | ||
509430456 | cf'(x) | 9 | ||
509430457 | f'(x)+g'(x) | 10 | ||
509430458 | The position function OR s(t) | 11 | ||
509430459 | f'(x)-g'(x) | 12 | ||
509430460 | uvw'+uv'w+u'vw | 13 | ||
509430461 | cos(x) | 14 | ||
509430462 | -sin(x) | 15 | ||
509430463 | sec²(x) | 16 | ||
509430464 | -csc²(x) | 17 | ||
509430465 | sec(x)tan(x) | 18 | ||
509430466 | dy/dx | 19 | ||
509430467 | f'(g(x))g'(x) | 20 | ||
509430468 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | 21 | |
509430469 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | 22 | |
509430470 | Rolle's Theorem | Let f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval). | 23 | |
509430471 | Mean Value Theorem | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | 24 | |
509430472 | First Derivative Test for local extrema | 25 | ||
509430473 | Point of inflection at x=k | 26 | ||
509430474 | Combo Test for local extrema | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | 27 | |
509430475 | Horizontal Asymptote | 28 | ||
509430476 | L'Hopital's Rule | 29 | ||
509430477 | x+c | 30 | ||
509430478 | sin(x)+C | 31 | ||
509430479 | -cos(x)+C | 32 | ||
509430480 | tan(x)+C | 33 | ||
509430481 | -cot(x)+C | 34 | ||
509430482 | sec(x)+C | 35 | ||
509430483 | -csc(x)+C | 36 | ||
509430484 | Fundamental Theorem of Calculus #1 | The definite integral of a rate of change is the total change in the original function. | 37 | |
509430485 | Fundamental Theorem of Calculus #2 | 38 | ||
509430486 | Mean Value Theorem for integrals or the average value of a functions | 39 | ||
509430487 | ln(x)+C | 40 | ||
509430488 | -ln(cosx)+C = ln(secx)+C | hint: tanu = sinu/cosu | 41 | |
509430489 | ln(sinx)+C = -ln(cscx)+C | 42 | ||
509430490 | ln(secx+tanx)+C = -ln(secx-tanx)+C | 43 | ||
509430491 | ln(cscx+cotx)+C = -ln(cscx-cotx)+C | 44 | ||
509430492 | If f and g are inverses of each other, g'(x) | 45 | ||
509430493 | Exponential growth (use N= ) | 46 | ||
509430494 | Area under a curve | 47 | ||
509430495 | Formula for Disk Method | Axis of rotation is a boundary of the region. | 48 | |
509430496 | Formula for Washer Method | Axis of rotation is not a boundary of the region. | 49 | |
509430497 | Inverse Secant Antiderivative | 50 | ||
509430498 | Inverse Tangent Antiderivative | 51 | ||
509430499 | Inverse Sine Antiderivative | 52 | ||
509430500 | Derivative of eⁿ | 53 | ||
509430501 | ln(a)*aⁿ+C | 54 | ||
509430502 | Derivative of ln(u) | 55 | ||
509430503 | Antiderivative of f(x) from [a,b] | 56 | ||
509430504 | Opposite Antiderivatives | 57 | ||
509430505 | Antiderivative of xⁿ | 58 | ||
509430506 | Adding or subtracting antiderivatives | 59 | ||
509430507 | Constants in integrals | 60 | ||
509430508 | Identity function | D: (-∞,+∞) R: (-∞,+∞) | 61 | |
509430509 | Squaring function | D: (-∞,+∞) R: (o,+∞) | 62 | |
509430510 | Cubing function | D: (-∞,+∞) R: (-∞,+∞) | 63 | |
509430511 | Reciprocal function | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | 64 | |
509430512 | Square root function | D: (0,+∞) R: (0,+∞) | 65 | |
509430513 | Exponential function | D: (-∞,+∞) R: (0,+∞) | 66 | |
509430514 | Natural log function | D: (0,+∞) R: (-∞,+∞) | 67 | |
509430515 | Sine function | D: (-∞,+∞) R: [-1,1] | 68 | |
509430516 | Cosine function | D: (-∞,+∞) R: [-1,1] | 69 | |
509430517 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | 70 | |
509430518 | Greatest integer function | D: (-∞,+∞) R: (-∞,+∞) | 71 | |
509430519 | Logistic function | D: (-∞,+∞) R: (0, 1) | 72 | |
509430520 | Given f(x): Is f continuous @ C Is f' continuous @ C | Yes lim+=lim-=f(c) No, f'(c) doesn't exist because of cusp | 73 | |
509430521 | Given f'(x): Is f continuous @ c? Is there an inflection point on f @ C? | This is a graph of f'(x). Since f'(C) exists, differentiability implies continuouity, so Yes.
Yes f' decreases on X | 74 |