Fundamental theorem of algebra
Subject:
Algebra [1]
The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. Equivalently, the field of complex numbers is algebraically closed. Sometimes, this theorem is stated as: every non-zero single-variable polynomial with complex coefficients has exactly as many complex roots as its degree, if each root is counted up to its multiplicity. Although this at first appears to be a stronger statement, it is a direct consequence of the other form of the theorem, through the use of successive polynomial division by linear factors.