AP Notes, Outlines, Study Guides, Vocabulary, Practice Exams and more!


Inverse Functions

No votes yet

Inverse Functions Given a function , if there is a function such that which equals the identity function The function is said to be "invertible" "undoes" what "does", and vice versa Such a function is called the inverse, denoted as (the inverse of ) The notation is not to be confused with an exponent In some cases the inverse of a function can be found through algebraic methods CONSIDER: Given to determine we must find a functions that must undo But, recall the set of outputs from , to undo we take Thus Observe that: Not every function has an inverse CONSIDER: But is not a function. An inverse only exists when different inputs in the domain always yield different outputs in the range Such functions are called one-to-one
Subscribe to RSS - Bijection

Need Help?

We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.

For general help, questions, and suggestions, try our dedicated support forums.

If you need to contact the Course-Notes.Org web experience team, please use our contact form.

Need Notes?

While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!