AP Notes, Outlines, Study Guides, Vocabulary, Practice Exams and more!

Calculus Flashcards

Terms : Hide Images
353672041710
353672041801
3536720419Squeeze Theorem2
3536720420f is continuous at x=c if...3
3536720421Intermediate Value TheoremIf f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k4
3536720422Global Definition of a Derivative5
3536720423Alternative Definition of a Derivativef '(x) is the limit of the following difference quotient as x approaches c6
3536720424nx^(n-1)7
353672042518
3536720426cf'(x)9
3536720427f'(x)+g'(x)10
3536720428The position function OR s(t)11
3536720429f'(x)-g'(x)12
3536720430uvw'+uv'w+u'vw13
3536720431cos(x)14
3536720432-sin(x)15
3536720433sec²(x)16
3536720434-csc²(x)17
3536720435sec(x)tan(x)18
3536720436dy/dx19
3536720437f'(g(x))g'(x)20
3536720438Extreme Value TheoremIf f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval.21
3536720439Critical NumberIf f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined)22
3536720440Rolle's TheoremLet f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval).23
3536720441Mean Value TheoremThe instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line.24
3536720442First Derivative Test for local extrema25
3536720443Point of inflection at x=k26
3536720444Combo Test for local extremaIf f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c.27
3536720445Horizontal Asymptote28
3536720446L'Hopital's Rule29
3536720447x+c30
3536720448sin(x)+C31
3536720449-cos(x)+C32
3536720450tan(x)+C33
3536720451-cot(x)+C34
3536720452sec(x)+C35
3536720453-csc(x)+C36
3536720454Fundamental Theorem of Calculus #1The definite integral of a rate of change is the total change in the original function.37
3536720455Fundamental Theorem of Calculus #238
3536720456Mean Value Theorem for integrals or the average value of a functions39
3536720457ln(x)+C40
3536720458-ln(cosx)+C = ln(secx)+Chint: tanu = sinu/cosu41
3536720459ln(sinx)+C = -ln(cscx)+C42
3536720460ln(secx+tanx)+C = -ln(secx-tanx)+C43
3536720461ln(cscx+cotx)+C = -ln(cscx-cotx)+C44
3536720462If f and g are inverses of each other, g'(x)45
3536720463Exponential growth (use N= )46
3536720464Area under a curve47
3536720465Formula for Disk MethodAxis of rotation is a boundary of the region.48
3536720466Formula for Washer MethodAxis of rotation is not a boundary of the region.49
3536720467Inverse Secant Antiderivative50
3536720468Inverse Tangent Antiderivative51
3536720469Inverse Sine Antiderivative52
3536720470Derivative of eⁿ53
3536720471ln(a)*aⁿ+C54
3536720472Derivative of ln(u)55
3536720473Antiderivative of f(x) from [a,b]56
3536720474Opposite Antiderivatives57
3536720475Antiderivative of xⁿ58
3536720476Adding or subtracting antiderivatives59
3536720477Constants in integrals60
3536720478Identity functionD: (-∞,+∞) R: (-∞,+∞)61
3536720479Squaring functionD: (-∞,+∞) R: (o,+∞)62
3536720480Cubing functionD: (-∞,+∞) R: (-∞,+∞)63
3536720481Reciprocal functionD: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero64
3536720482Square root functionD: (0,+∞) R: (0,+∞)65
3536720483Exponential functionD: (-∞,+∞) R: (0,+∞)66
3536720484Natural log functionD: (0,+∞) R: (-∞,+∞)67
3536720485Sine functionD: (-∞,+∞) R: [-1,1]68
3536720486Cosine functionD: (-∞,+∞) R: [-1,1]69
3536720487Absolute value functionD: (-∞,+∞) R: [0,+∞)70
3536720488Logistic functionD: (-∞,+∞) R: (0, 1)71
3536720489cos(π/6)√3/272
3536720490cos(π/4)√2/273
3536720491cos(π/3)1/274
3536720492cos(π/2)075
3536720493cos(2π/3)−1/276
3536720494cos(3π/4)−√2/277
3536720495cos(5π/6)−√3/278
3536720496cos(π)−179
3536720497cos(7π/6)−√3/280
3536720498cos(5π/4)−√2/281
3536720499cos(4π/3)−1/282
3536720500cos(3π/2)083
3536720501cos(5π/3)1/284
3536720502cos(7π/4)√2/285
3536720503cos(11π/6)√3/286
3536720504cos(2π)187
3536720505sin(π/6)1/288
3536720506sin(π/4)√2/289
3536720507sin(π/3)√3/290
3536720508sin(π/2)191
3536720509sin(2π/3)√3/292
3536720510sin(3π/4)√2/293
3536720511sin(5π/6)1/294
3536720512sin(π)095
3536720513sin(7π/6)−1/296
3536720514sin(5π/4)−√2/297
3536720515sin(4π/3)−√3/298
3536720516sin(3π/2)−199
3536720517sin(5π/3)−√3/2100
3536720518sin(7π/4)−√2/2101
3536720519sin(11π/6)−1/2102
3536720520sin(2π)0103
3536720521f(x) = e^(x-2)Asymptote: y=0 Domain: (-∞, ∞)104
3536720522f(x)=ln(x-2)Asymptote: x=2 Domain: (2, ∞)105
3536720523f(x)=ln(-x)Asymptote: x=0 Domain: (-∞, 0)106
3536720524f(x)=e^(x+2)Asymptote: y=0 Domain: (-∞, ∞)107
3536720525f(x)= -2+lnxAsymptote: x=0 Domain: (0, ∞)108
3536720526f(x)=-lnxAsymptote: x=0 Domain: (0, ∞)109
3536720527f(x) = e^(x) +2Asymptote: y=2 Domain: (-∞, ∞)110
3536720528f(x)=ln(x+2)Asymptote: x=-2 Domain: (-2, ∞)111
3536720529What does the graph y = sin(x) look like?112
3536720530What does the graph y = cos(x) look like?113
3536720531What does the graph y = tan(x) look like?114
3536720532What does the graph y = csc(x) look like?115
3536720533What does the graph y = sec(x) look like?116
3536720534What does the graph y = cot(x) look like?117
3536720535d/dx[e^x]=e^x118
3536720536d/dx[a^x]=a^x*lna119
3536720537d/dx[e^g(x)]=g'(x)e^g(x)120
3536720538d/dx[a^g(x)]=g'(x)a^g(x)lna121
3536720539d/dx[cos⁻¹x]=-1/√(1-x^2)122
3536720540d/dx[sin⁻¹x]=1/√(1-x^2)123
3536720541d/dx[tan⁻¹x]=1/(1+x^2)124
3536720542d/dx[tanx]=sec²x125
3536720543d/dx[secx]=secxtanx126
3536720544d/dx[cscx]=-cscxcotx127
3536720545d/dx[cotx]=-csc²x128
3536720546∫e^xdx=e^x+C129
3536720547∫a^xdx=(a^x)/lna+C130
3536720548∫1/xdx=ln|x|+C131
3536720549∫1/(1+x^2)dx=tan⁻¹x+C132
3536720550∫1/(a^2+x^2)dx=(1/a)(tan⁻¹(x/a)+C133
3536720551∫1/√(1-x^2)dx=sin⁻¹x+C134
3536720552∫tanxdx=ln|secx|+C135
3536720553Trig Identity: 1=cos²x+sin²x136
3536720554Trig Identity: sec²x=tan²x+1137
3536720555Trig Identity: cos²x=½(1+cos(2x))138
3536720556Trig Identity: sin²x=½(1-cos(2x))139
3536720557Trig Identity: sin(2x)=2sinxcosx140
3536720558Trig Identity: cos(2x)=1-2sin²x = 2cos²x-1141
3536720559Integration by Parts: Choice of uI = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x142
3536720560∫secxdx=ln|secx+tanx|+C143
3536720561What does the graph y = sin(x) look like?144
3536720562What does the graph y = cos(x) look like?145
3536720563What does the graph y = tan(x) look like?146
3536720564What does the graph y = csc(x) look like?147
3536720565What does the graph y = sec(x) look like?148
3536720566What does the graph y = cot(x) look like?149
3536720567d/dx[e^x]=e^x150
3536720568d/dx[a^x]=a^x*lna151
3536720569d/dx[e^g(x)]=g'(x)e^g(x)152
3536720570d/dx[a^g(x)]=g'(x)a^g(x)lna153
3536720571d/dx[cos⁻¹x]=-1/√(1-x^2)154
3536720572d/dx[sin⁻¹x]=1/√(1-x^2)155
3536720573d/dx[tan⁻¹x]=1/(1+x^2)156
3536720574d/dx[tanx]=sec²x157
3536720575d/dx[secx]=secxtanx158
3536720576d/dx[cscx]=-cscxcotx159
3536720577d/dx[cotx]=-csc²x160
3536720578∫e^xdx=e^x+C161
3536720579∫a^xdx=(a^x)/lna+C162
3536720580∫1/xdx=ln|x|+C163
3536720581∫1/(1+x^2)dx=tan⁻¹x+C164
3536720582∫1/(a^2+x^2)dx=(1/a)(tan⁻¹(x/a)+C165
3536720583∫1/√(1-x^2)dx=sin⁻¹x+C166
3536720584∫tanxdx=ln|secx|+C167
3536720585Trig Identity: 1=cos²x+sin²x168
3536720586Trig Identity: sec²x=tan²x+1169
3536720587Trig Identity: cos²x=½(1+cos(2x))170
3536720588Trig Identity: sin²x=½(1-cos(2x))171
3536720589Trig Identity: sin(2x)=2sinxcosx172
3536720590Trig Identity: cos(2x)=1-2sin²x = 2cos²x-1173
3536720591Integration by Parts: Choice of uI = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x174
3536720592∫secxdx=ln|secx+tanx|+C175

Need Help?

We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.

For general help, questions, and suggestions, try our dedicated support forums.

If you need to contact the Course-Notes.Org web experience team, please use our contact form.

Need Notes?

While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!