3536720417 | 1 | 0 | ||
3536720418 | 0 | 1 | ||
3536720419 | Squeeze Theorem | 2 | ||
3536720420 | f is continuous at x=c if... | 3 | ||
3536720421 | Intermediate Value Theorem | If f is continuous on [a,b] and k is a number between f(a) and f(b), then there exists at least one number c such that f(c)=k | 4 | |
3536720422 | Global Definition of a Derivative | 5 | ||
3536720423 | Alternative Definition of a Derivative | f '(x) is the limit of the following difference quotient as x approaches c | 6 | |
3536720424 | nx^(n-1) | 7 | ||
3536720425 | 1 | 8 | ||
3536720426 | cf'(x) | 9 | ||
3536720427 | f'(x)+g'(x) | 10 | ||
3536720428 | The position function OR s(t) | 11 | ||
3536720429 | f'(x)-g'(x) | 12 | ||
3536720430 | uvw'+uv'w+u'vw | 13 | ||
3536720431 | cos(x) | 14 | ||
3536720432 | -sin(x) | 15 | ||
3536720433 | sec²(x) | 16 | ||
3536720434 | -csc²(x) | 17 | ||
3536720435 | sec(x)tan(x) | 18 | ||
3536720436 | dy/dx | 19 | ||
3536720437 | f'(g(x))g'(x) | 20 | ||
3536720438 | Extreme Value Theorem | If f is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b]. The global extrema occur at critical points in the interval or at endpoints of the interval. | 21 | |
3536720439 | Critical Number | If f'(c)=0 or does not exist, and c is in the domain of f, then c is a critical number. (Derivative is 0 or undefined) | 22 | |
3536720440 | Rolle's Theorem | Let f be continuous on [a,b] and differentiable on (a,b) and if f(a)=f(b) then there is at least one number c on (a,b) such that f'(c)=0 (If the slope of the secant is 0, the derivative must = 0 somewhere in the interval). | 23 | |
3536720441 | Mean Value Theorem | The instantaneous rate of change will equal the mean rate of change somewhere in the interval. Or, the tangent line will be parallel to the secant line. | 24 | |
3536720442 | First Derivative Test for local extrema | 25 | ||
3536720443 | Point of inflection at x=k | 26 | ||
3536720444 | Combo Test for local extrema | If f'(c) = 0 and f"(c)<0, there is a local max on f at x=c. If f'(c) = 0 and f"(c)>0, there is a local min on f at x=c. | 27 | |
3536720445 | Horizontal Asymptote | 28 | ||
3536720446 | L'Hopital's Rule | 29 | ||
3536720447 | x+c | 30 | ||
3536720448 | sin(x)+C | 31 | ||
3536720449 | -cos(x)+C | 32 | ||
3536720450 | tan(x)+C | 33 | ||
3536720451 | -cot(x)+C | 34 | ||
3536720452 | sec(x)+C | 35 | ||
3536720453 | -csc(x)+C | 36 | ||
3536720454 | Fundamental Theorem of Calculus #1 | The definite integral of a rate of change is the total change in the original function. | 37 | |
3536720455 | Fundamental Theorem of Calculus #2 | 38 | ||
3536720456 | Mean Value Theorem for integrals or the average value of a functions | 39 | ||
3536720457 | ln(x)+C | 40 | ||
3536720458 | -ln(cosx)+C = ln(secx)+C | hint: tanu = sinu/cosu | 41 | |
3536720459 | ln(sinx)+C = -ln(cscx)+C | 42 | ||
3536720460 | ln(secx+tanx)+C = -ln(secx-tanx)+C | 43 | ||
3536720461 | ln(cscx+cotx)+C = -ln(cscx-cotx)+C | 44 | ||
3536720462 | If f and g are inverses of each other, g'(x) | 45 | ||
3536720463 | Exponential growth (use N= ) | 46 | ||
3536720464 | Area under a curve | 47 | ||
3536720465 | Formula for Disk Method | Axis of rotation is a boundary of the region. | 48 | |
3536720466 | Formula for Washer Method | Axis of rotation is not a boundary of the region. | 49 | |
3536720467 | Inverse Secant Antiderivative | 50 | ||
3536720468 | Inverse Tangent Antiderivative | 51 | ||
3536720469 | Inverse Sine Antiderivative | 52 | ||
3536720470 | Derivative of eⁿ | 53 | ||
3536720471 | ln(a)*aⁿ+C | 54 | ||
3536720472 | Derivative of ln(u) | 55 | ||
3536720473 | Antiderivative of f(x) from [a,b] | 56 | ||
3536720474 | Opposite Antiderivatives | 57 | ||
3536720475 | Antiderivative of xⁿ | 58 | ||
3536720476 | Adding or subtracting antiderivatives | 59 | ||
3536720477 | Constants in integrals | 60 | ||
3536720478 | Identity function | D: (-∞,+∞) R: (-∞,+∞) | 61 | |
3536720479 | Squaring function | D: (-∞,+∞) R: (o,+∞) | 62 | |
3536720480 | Cubing function | D: (-∞,+∞) R: (-∞,+∞) | 63 | |
3536720481 | Reciprocal function | D: (-∞,+∞) x can't be zero R: (-∞,+∞) y can't be zero | 64 | |
3536720482 | Square root function | D: (0,+∞) R: (0,+∞) | 65 | |
3536720483 | Exponential function | D: (-∞,+∞) R: (0,+∞) | 66 | |
3536720484 | Natural log function | D: (0,+∞) R: (-∞,+∞) | 67 | |
3536720485 | Sine function | D: (-∞,+∞) R: [-1,1] | 68 | |
3536720486 | Cosine function | D: (-∞,+∞) R: [-1,1] | 69 | |
3536720487 | Absolute value function | D: (-∞,+∞) R: [0,+∞) | 70 | |
3536720488 | Logistic function | D: (-∞,+∞) R: (0, 1) | 71 | |
3536720489 | cos(π/6) | √3/2 | 72 | |
3536720490 | cos(π/4) | √2/2 | 73 | |
3536720491 | cos(π/3) | 1/2 | 74 | |
3536720492 | cos(π/2) | 0 | 75 | |
3536720493 | cos(2π/3) | −1/2 | 76 | |
3536720494 | cos(3π/4) | −√2/2 | 77 | |
3536720495 | cos(5π/6) | −√3/2 | 78 | |
3536720496 | cos(π) | −1 | 79 | |
3536720497 | cos(7π/6) | −√3/2 | 80 | |
3536720498 | cos(5π/4) | −√2/2 | 81 | |
3536720499 | cos(4π/3) | −1/2 | 82 | |
3536720500 | cos(3π/2) | 0 | 83 | |
3536720501 | cos(5π/3) | 1/2 | 84 | |
3536720502 | cos(7π/4) | √2/2 | 85 | |
3536720503 | cos(11π/6) | √3/2 | 86 | |
3536720504 | cos(2π) | 1 | 87 | |
3536720505 | sin(π/6) | 1/2 | 88 | |
3536720506 | sin(π/4) | √2/2 | 89 | |
3536720507 | sin(π/3) | √3/2 | 90 | |
3536720508 | sin(π/2) | 1 | 91 | |
3536720509 | sin(2π/3) | √3/2 | 92 | |
3536720510 | sin(3π/4) | √2/2 | 93 | |
3536720511 | sin(5π/6) | 1/2 | 94 | |
3536720512 | sin(π) | 0 | 95 | |
3536720513 | sin(7π/6) | −1/2 | 96 | |
3536720514 | sin(5π/4) | −√2/2 | 97 | |
3536720515 | sin(4π/3) | −√3/2 | 98 | |
3536720516 | sin(3π/2) | −1 | 99 | |
3536720517 | sin(5π/3) | −√3/2 | 100 | |
3536720518 | sin(7π/4) | −√2/2 | 101 | |
3536720519 | sin(11π/6) | −1/2 | 102 | |
3536720520 | sin(2π) | 0 | 103 | |
3536720521 | f(x) = e^(x-2) | Asymptote: y=0 Domain: (-∞, ∞) | 104 | |
3536720522 | f(x)=ln(x-2) | Asymptote: x=2 Domain: (2, ∞) | 105 | |
3536720523 | f(x)=ln(-x) | Asymptote: x=0 Domain: (-∞, 0) | 106 | |
3536720524 | f(x)=e^(x+2) | Asymptote: y=0 Domain: (-∞, ∞) | 107 | |
3536720525 | f(x)= -2+lnx | Asymptote: x=0 Domain: (0, ∞) | 108 | |
3536720526 | f(x)=-lnx | Asymptote: x=0 Domain: (0, ∞) | 109 | |
3536720527 | f(x) = e^(x) +2 | Asymptote: y=2 Domain: (-∞, ∞) | 110 | |
3536720528 | f(x)=ln(x+2) | Asymptote: x=-2 Domain: (-2, ∞) | 111 | |
3536720529 | What does the graph y = sin(x) look like? | 112 | ||
3536720530 | What does the graph y = cos(x) look like? | 113 | ||
3536720531 | What does the graph y = tan(x) look like? | 114 | ||
3536720532 | What does the graph y = csc(x) look like? | 115 | ||
3536720533 | What does the graph y = sec(x) look like? | 116 | ||
3536720534 | What does the graph y = cot(x) look like? | 117 | ||
3536720535 | d/dx[e^x]= | e^x | 118 | |
3536720536 | d/dx[a^x]= | a^x*lna | 119 | |
3536720537 | d/dx[e^g(x)]= | g'(x)e^g(x) | 120 | |
3536720538 | d/dx[a^g(x)]= | g'(x)a^g(x)lna | 121 | |
3536720539 | d/dx[cos⁻¹x]= | -1/√(1-x^2) | 122 | |
3536720540 | d/dx[sin⁻¹x]= | 1/√(1-x^2) | 123 | |
3536720541 | d/dx[tan⁻¹x]= | 1/(1+x^2) | 124 | |
3536720542 | d/dx[tanx]= | sec²x | 125 | |
3536720543 | d/dx[secx]= | secxtanx | 126 | |
3536720544 | d/dx[cscx]= | -cscxcotx | 127 | |
3536720545 | d/dx[cotx]= | -csc²x | 128 | |
3536720546 | ∫e^xdx= | e^x+C | 129 | |
3536720547 | ∫a^xdx= | (a^x)/lna+C | 130 | |
3536720548 | ∫1/xdx= | ln|x|+C | 131 | |
3536720549 | ∫1/(1+x^2)dx= | tan⁻¹x+C | 132 | |
3536720550 | ∫1/(a^2+x^2)dx= | (1/a)(tan⁻¹(x/a)+C | 133 | |
3536720551 | ∫1/√(1-x^2)dx= | sin⁻¹x+C | 134 | |
3536720552 | ∫tanxdx= | ln|secx|+C | 135 | |
3536720553 | Trig Identity: 1= | cos²x+sin²x | 136 | |
3536720554 | Trig Identity: sec²x= | tan²x+1 | 137 | |
3536720555 | Trig Identity: cos²x= | ½(1+cos(2x)) | 138 | |
3536720556 | Trig Identity: sin²x= | ½(1-cos(2x)) | 139 | |
3536720557 | Trig Identity: sin(2x)= | 2sinxcosx | 140 | |
3536720558 | Trig Identity: cos(2x)= | 1-2sin²x = 2cos²x-1 | 141 | |
3536720559 | Integration by Parts: Choice of u | I = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x | 142 | |
3536720560 | ∫secxdx= | ln|secx+tanx|+C | 143 | |
3536720561 | What does the graph y = sin(x) look like? | 144 | ||
3536720562 | What does the graph y = cos(x) look like? | 145 | ||
3536720563 | What does the graph y = tan(x) look like? | 146 | ||
3536720564 | What does the graph y = csc(x) look like? | 147 | ||
3536720565 | What does the graph y = sec(x) look like? | 148 | ||
3536720566 | What does the graph y = cot(x) look like? | 149 | ||
3536720567 | d/dx[e^x]= | e^x | 150 | |
3536720568 | d/dx[a^x]= | a^x*lna | 151 | |
3536720569 | d/dx[e^g(x)]= | g'(x)e^g(x) | 152 | |
3536720570 | d/dx[a^g(x)]= | g'(x)a^g(x)lna | 153 | |
3536720571 | d/dx[cos⁻¹x]= | -1/√(1-x^2) | 154 | |
3536720572 | d/dx[sin⁻¹x]= | 1/√(1-x^2) | 155 | |
3536720573 | d/dx[tan⁻¹x]= | 1/(1+x^2) | 156 | |
3536720574 | d/dx[tanx]= | sec²x | 157 | |
3536720575 | d/dx[secx]= | secxtanx | 158 | |
3536720576 | d/dx[cscx]= | -cscxcotx | 159 | |
3536720577 | d/dx[cotx]= | -csc²x | 160 | |
3536720578 | ∫e^xdx= | e^x+C | 161 | |
3536720579 | ∫a^xdx= | (a^x)/lna+C | 162 | |
3536720580 | ∫1/xdx= | ln|x|+C | 163 | |
3536720581 | ∫1/(1+x^2)dx= | tan⁻¹x+C | 164 | |
3536720582 | ∫1/(a^2+x^2)dx= | (1/a)(tan⁻¹(x/a)+C | 165 | |
3536720583 | ∫1/√(1-x^2)dx= | sin⁻¹x+C | 166 | |
3536720584 | ∫tanxdx= | ln|secx|+C | 167 | |
3536720585 | Trig Identity: 1= | cos²x+sin²x | 168 | |
3536720586 | Trig Identity: sec²x= | tan²x+1 | 169 | |
3536720587 | Trig Identity: cos²x= | ½(1+cos(2x)) | 170 | |
3536720588 | Trig Identity: sin²x= | ½(1-cos(2x)) | 171 | |
3536720589 | Trig Identity: sin(2x)= | 2sinxcosx | 172 | |
3536720590 | Trig Identity: cos(2x)= | 1-2sin²x = 2cos²x-1 | 173 | |
3536720591 | Integration by Parts: Choice of u | I = Inverse Trig Function L = Natural log (lnx) A = Algebraic Expression (x, x², x³...) T = Trig function (sinx, cosx) E = e^x | 174 | |
3536720592 | ∫secxdx= | ln|secx+tanx|+C | 175 |
Calculus Flashcards
Primary tabs
Need Help?
We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.
For general help, questions, and suggestions, try our dedicated support forums.
If you need to contact the Course-Notes.Org web experience team, please use our contact form.
Need Notes?
While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!