2092352077 | Right Triangle Def. sin θ = | Opposite/Hypotenuse | 0 | |
2092352078 | Right Triangle Def. cos θ = | Adjacent/Hypotenuse | 1 | |
2092352079 | Right Triangle Def. tan θ = | Opposite/Adjacent | 2 | |
2092352080 | Right Triangle Def. csc θ = | Hypotenuse/Opposite | 3 | |
2092352081 | Right Triangle Def. sec θ = | Hypotenuse/Adjacent | 4 | |
2092352082 | Right Triangle Def. cot θ = | Adjacent/Opposite | 5 | |
2092352083 | Unit Circle Def. sin θ = | y/1 = y | 6 | |
2092352084 | Unit Circle Def. cos θ = | x/1 = x | 7 | |
2092352085 | Unit Circle Def. tan θ = | y/x | 8 | |
2092352086 | csc θ = | 1/y | 9 | |
2092352087 | sec θ = | 1/x | 10 | |
2092352088 | cot θ = | x/y | 11 | |
2092352089 | Domain | All the values of θ that can be plugged into the function. | 12 | |
2092352090 | Domain of sinθ | Any Angle | 13 | |
2092352091 | Domain of cosθ | Any Angle | 14 | |
2092352092 | Domain of tanθ | ≠(n+1/2)π, n=0,±1,±2... | 15 | |
2092352093 | Domain of secθ | ≠(n+1/2)π, n=0,±1,±2... | 16 | |
2092352094 | Domain of cscθ | ≠nπ, n=0,±1,±2... | 17 | |
2092352095 | Domain of cotθ | ≠nπ, n=0,±1,±2... | 18 | |
2092355184 | Range | All possible values to get out of the function | 19 | |
2092355185 | Range of values for sin | -1≤sinθ≤1 | 20 | |
2092355186 | Range of values for cos | -1≤cosθ≤1 | 21 | |
2092355187 | Range of values for tan | -∞22 | | |
2092355188 | Range of values for csc | cscθ≥1 and cscθ≤-1 | 23 | |
2092355189 | Range of values for sec | secθ≥1 and secθ≤-1 | 24 | |
2092355190 | Range of values for cot | -∞25 | | |
2092357756 | Period | The number, T, of a function such that f(θ+T) = f(θ). So if w is a fixed number and θ is any angle we have a period such as sin(wθ) → T=(2π/w) | 26 | |
2092357757 | Period of sin(wθ) | T = 2π/w | 27 | |
2092357758 | Period of cos(wθ) | T = 2π/w | 28 | |
2092357759 | Period of tan(wθ) | T = π/w | 29 | |
2092357760 | Period of csc(wθ) | T = 2π/w | 30 | |
2092357761 | Period of sec(wθ) | T = 2π/2 | 31 | |
2092357762 | Period of cot(wθ) | T = π/w | 32 | |
2098578655 | Identity tanθ | sinθ/cosθ | 33 | |
2098578656 | Identity cotθ | cosθ/sinθ | 34 | |
2098578657 | Reciprocal identity csc θ = | 1/sinθ | 35 | |
2098578658 | Reciprocal Identity sin θ = | 1/ cscθ | 36 | |
2098578659 | Reciprocal Identity sec θ = | 1/ cosθ | 37 | |
2098578660 | Reciprocal Identity cos θ = | 1/ secθ | 38 | |
2098578661 | Reciprocal Identity cot θ = | 1/ tanθ | 39 | |
2098578662 | Reciprocal Identity tan θ = | 1/ cotθ | 40 | |
2098578663 | Pythagorean Identity (sin^2)θ + (cos^2)θ = | 1 | 41 | |
2098578664 | Pythagorean Identity (tan^2)θ + 1 = | (sec^2)θ | 42 | |
2098578665 | Pythagorean Identity 1 + (cot^2)θ = | (csc^2)θ | 43 | |
2098578666 | Even/Odd Formulas sin(-θ) = | -sinθ | 44 | |
2098578667 | Even/Odd Formulas cos(-θ) = | cosθ | 45 | |
2098578668 | Even/Odd Formulas tan(-θ) = | -tanθ | 46 | |
2098578669 | Even/Odd Formulas csc(-θ) = | -cscθ | 47 | |
2098578670 | Even/Odd Formulas sec(-θ) = | secθ | 48 | |
2098578671 | Even/Odd Formulas cot(-θ) = | -cotθ | 49 | |
2098578672 | Periodic Formulas sin(θ + 2πn) = | sinθ | 50 | |
2098578673 | Periodic Formulas cos(θ + 2πn) = | cosθ | 51 | |
2098578674 | Periodic Formulas tan(θ + 2πn) = | tanθ | 52 | |
2098578675 | Periodic Formulas csc(θ + 2πn) = | cscθ | 53 | |
2098578676 | Periodic Formulas sec(θ + 2πn) = | secθ | 54 | |
2098578677 | Periodic Formulas cot(θ + πn) = | cotθ | 55 | |
2098578678 | Double Angle Formulas sin(2θ) = | 2sinθcosθ | 56 | |
2098578679 | Double Angle Formulas cos(2θ) = | (cos^2)θ - (sin^2)θ = 2(cos^2)θ - 1 = 1-2(sin^2)θ | 57 | |
2098578680 | Double Angle Formulas tan(2θ)= | (2tanθ)/(1-(tan^2)θ | 58 | |
2098578681 | Radians to Degrees formula x = degrees t = radians | Degrees = 180(radians)/π | 59 | |
2098578682 | Degrees to Radians formula x = degrees t = radians | Radians = [π(degrees)]/180 | 60 | |
2098578683 | Half Angle Formulas (sin^2)θ = | (1/2) (1-cos(2θ)) | 61 | |
2098578684 | Half Angle Formulas (cos^2)θ = | (1/2) (1+cos(2θ)) | 62 | |
2098578685 | Half Angle Formula (tan^2)θ = | (1-cos(2θ))/(1+cos(2θ)) | 63 | |
2098578686 | Sum and Difference Formulas sin (α±β)= | (sinα*cosβ) ± (cosα*sinβ) | 64 | |
2098578687 | Sum and Difference Formulas cos (α±β)= | (cosα*cosβ) ± (sinα*sinβ) | 65 | |
2098578688 | Sum and Difference Formulas tan (α±β)= | (tanα ± tanβ)/(1±(tanα*tanβ) | 66 | |
2098578689 | Product to Sum Formulas (sinα*sinβ) = | (1/2)[cos(α-β) - cos(α+β)] | 67 | |
2098578690 | Product to Sum Formulas (cosα*cosβ) = | (1/2)[cos(α-β)+cos(α±β)] | 68 | |
2098578691 | Product to Sum Formulas (sinα*cosβ) = | (1/2)[sin(α+β)+sin(α-β)] | 69 | |
2098578692 | Product to Sum Formulas (cosα*sinβ) = | (1/2)[sin(α+β)-sin(α-β)] | 70 | |
2098578693 | Sum to Product Formulas sinα+sinβ | 2sin[(α+β)/2] * cos[(α-β)/2] | 71 | |
2098578694 | Sum to Product Formulas sinα-sinβ | 2cos[(α+β)/2] * sin[(α-β)/2] | 72 | |
2098578695 | Sum to Product Formulas cosα + cosβ | 2cos[(α+β)/2] * cos[(α-β)/2] | 73 | |
2098578696 | Sum to Product Formulas cosα - cosβ | 2sin[(α+β)/2] * sin[(α-β)/2] | 74 | |
2098578697 | Cofunction Formulas sin[(π/2)-θ] = | cosθ | 75 | |
2098578698 | Cofunction Formulas cos[(π/2)-θ] = | sinθ | 76 | |
2098578699 | Cofunction Formulas csc[(π/2)-θ] = | secθ | 77 | |
2098578700 | Cofunction Formulas sec[(π/2)-θ] = | cscθ | 78 | |
2098578701 | Cofunction Formulas tan[(π/2)-θ] = | cotθ | 79 | |
2098578702 | Cofunction Formulas cot[(π/2)-θ] = | tanθ | 80 |
Trigonometry Flashcards
Primary tabs
Need Help?
We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.
For general help, questions, and suggestions, try our dedicated support forums.
If you need to contact the Course-Notes.Org web experience team, please use our contact form.
Need Notes?
While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!