Ch8 SG
317 CHAPTER 8 Principles of Integral Evaluation EXERCISE SET 8.1 1. u = 3? 2x, du = ?2dx, ? 1 2 ? u3 du = ?1 8 u4 + C = ?1 8 (3? 2x)4 + C 2. u = 4 + 9x, du = 9dx, 1 9 ? u1/2 du = 2 3 ? 9u 3/2 + C = 2 27 (4 + 9x)3/2 + C 3. u = x2, du = 2xdx, 1 2 ? sec2 u du = 1 2 tanu+ C = 1 2 tan(x2) + C 4. u = x2, du = 2xdx, 2 ? tanu du = ?2 ln | cosu |+ C = ?2 ln | cos(x2)|+ C 5. u = 2 + cos 3x, du = ?3 sin 3xdx, ? 1 3 ? du u = ?1 3 ln |u|+ C = ?1 3 ln(2 + cos 3x) + C 6. u = 3x 2 , du = 3 2 dx, 2 3 ? du 4 + 4u2 = 1 6 ? du 1 + u2 = 1 6 tan?1 u+ C = 1 6 tan?1(3x/2) + C 7. u = ex, du = exdx, ? sinhu du = coshu+ C = cosh ex + C 8. u = lnx, du = 1 x dx, ? secu tanu du = secu+ C = sec(lnx) + C 9. u = cotx, du = ? csc2 xdx, ? ? eu du = ?eu + C = ?ecot x + C