Ch9 SG
372 CHAPTER 9 Mathematical Modeling with Differential Equations EXERCISE SET 9.1 1. y? = 2x2ex 3/3 = x2y and y(0) = 2 by inspection. 2. y? = x3 ? 2 sinx, y(0) = 3 by inspection. 3. (a) ?rst order; dy dx = c; (1 + x) dy dx = (1 + x)c = y (b) second order; y? = c1 cos t? c2 sin t, y?? + y = ?c1 sin t? c2 cos t+ (c1 sin t+ c2 cos t) = 0 4. (a) ?rst order; 2 dy dx + y = 2 ( ? c 2 e?x/2 + 1 ) + ce?x/2 + x? 3 = x? 1 (b) second order; y? = c1et ? c2e?t, y?? ? y = c1et + c2e?t ? ( c1et + c2e?t ) = 0 5. 1 y dy dx = x dy dx + y, dy dx (1? xy) = y2, dy dx = y2 1? xy 6. 2x+ y2 + 2xy dy dx = 0, by inspection. 7. (a) IF: ? = e3 ? dx = e3x, d dx [ ye3x ] = 0, ye3x = C, y = Ce?3x separation of variables: dy y = ?3dx, ln |y| = ?3x+ C1, y = ?e?3xeC1 = Ce?3x