## graph quadratics in vertex form

3 H 5 Vt4Section 4.7: Graph of Quadratic Functions in Vertex or Intercept rm. J *Reca ll the transformations from Section 2.7 we learned f(x) = a I x - hi + Ic for absolute value functions. Vertex Form of a Quadratic f(x) =' (x - h)2 + ? Vertex: -Kit itc'1eS-- 0 r 2f4oO&1 Axis of Symmetry: In 0 *l.L tot,&) J'&H- ? Opens up/down if: Example 1: Given f(x) = x2, write it in vertex form and graph. totAJe-k- polv1+ on hne con1-aiw\k -' 4?LiOOlO?' j x ' - t 03 I \ z_ (oo) h t. Example 2: Given f(x) = (x - 3)2 - 5, state the vertex and axis of symmetry, describe the translations, and graph. (h,-) Vertex: (y) Axis of Symm: 3 Translations: 110flZ0iT1t'A 1 (C\\* 3 \rc&k C1$SIO(\ Vi (extjj \- CoLJJfl .iej~ 5o~ I ~~ k q I