The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. Equivalently, the field of complex numbers is algebraically closed. Sometimes, this theorem is stated as: every non-zero single-variable polynomial with complex coefficients has exactly as many complex roots as its degree, if each root is counted up to its multiplicity. Although this at first appears to be a stronger statement, it is a direct consequence of the other form of the theorem, through the use of successive polynomial division by linear factors.
Fundamental theorem of algebra
The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. Equivalently, the field of complex numbers is algebraically closed. Sometimes, this theorem is stated as: every non-zero single-variable polynomial with complex coefficients has exactly as many complex roots as its degree, if each root is counted up to its multiplicity. Although this at first appears to be a stronger statement, it is a direct consequence of the other form of the theorem, through the use of successive polynomial division by linear factors.
Need Help?
We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.
For general help, questions, and suggestions, try our dedicated support forums.
If you need to contact the Course-Notes.Org web experience team, please use our contact form.
Need Notes?
While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!