AP Notes, Outlines, Study Guides, Vocabulary, Practice Exams and more!

Mathematical analysis

Precalculus Functions Anecdotes

Subject: 
Rating: 
0
No votes yet

1. Identity Function-This is the only function thats acts on every real number by leaving it alone 2. Square Root Function-Put any positive number into your calculator. Take the square root. Then take the square root again, and so on. Eventually you will always get 1. 3. Squaring Function-The graph of this function, called a parabola, had a reflection property that is useful in making flashlights and satellite dishes. 4. Cubing Function-The origin is called a ?point of inflection? for this curve because the graph changes the curvature at the point. 5. Reciprocal Function-This curve, called a hyperbola, also has a reflection property that is useful in satellite dishes. 6. Natural Log Function-This function increases very slowly. If the x-axis and y-axis

Pre-Calculus Functions Chart

Subject: 
Rating: 
0
No votes yet

Sheet1 Formula Name Domain Range Increasing Interval Decreasing Interval Maximum Minimum x-Intercept y-Intercept End-Behavior VA HA Symmetry Continuity 1a(Parent) f(x)=x Identity Function (-?,?) (-?,?) (-?,?) None None None (0,0) (0,0) y-->? None None Odd Continuous 1b f(x)=x-6 None (-?,?) (-?,?) (-?,?) None None None (6,0) (0,-6) y-->? None None Neither Continuous 1c f(x)=x+3 None (-?,?) (-?,?) (-?,?) None None None (-3,0) (0,3) y-->? None None Neither Continuous 1d f(x)=3x None (-?,?) (-?,?) (-?,?) None None None (0,0) (0,0) y-->? None None Neither Continuous 1e f(x)=-x None (-?,?) (-?,?) None (-?,?) None None (0,0) (0,0) y-->-? None None Neither Continuous 1f f(x)=-3x+6 None (-?,?) (-?,?) None (-?,?) None None (2,0) (0,6) y-->-? None None Neither Continuous 1g y=a(x-h) +k

Handbook

Subject: 
Rating: 
0
No votes yet

Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bibliography; Physical Constants 1. Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Arithmetic and Geometric progressions; Convergence of series: the ratio test; Convergence of series: the comparison test; Binomial expansion; Taylor and Maclaurin Series; Power series with real variables; Integer series; Plane wave expansion

AP Calculus Cheat Sheet

Subject: 
Rating: 
0
No votes yet

Calculus Cheat Sheet Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. ? 2005 Paul Dawkins Limits Definitions Precise Definition : We say ( )limx a f x L? = if for every 0e > there is a 0d > such that whenever 0 x a d< - < then ( )f x L e- < . ?Working? Definition : We say ( )limx a f x L? = if we can make ( )f x as close to L as we want by taking x sufficiently close to a (on either side of a) without letting x a= . Right hand limit : ( )limx a f x L+? = . This has the same definition as the limit except it requires x a> . Left hand limit : ( )limx a f x L-? = . This has the same definition as the limit except it requires x a< . Limit at Infinity : We say ( )limx f x L?? = if we

New Work

Subject: 
Rating: 
0
No votes yet

MasterMathMentor.com!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!Q#!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Stu Schwartz Function Analysis - Classwork =*!+70!,1'+!,7!&+&(.S)+:!61+5,)7+2!A)&!5&(51(12;!=*!3)3!27!)+!D'*5&(51(12!4.!3*,*'9)+)+:!,-*!S*'72!76!,-*!61+5,)7+ X0-*'*!),!5'722*2!,-*!x"&E)2G!&+3!,-*!2):+!76!,-*!61+5,)7+!4*,0**+!S*'72;!L-&,!:&A*!12!279*!)+67'9&,)7+!&471,!,-* 61+5,)7+!41,!(),,(*!5(1*!&2!,7!),2!&5,1&(!2-&D*;!@&(51(12!0)((!D'7A)3*!,-*!9)22)+:!D)*5*2!,7!,-*!D1SS(*; =*!0)((!3*6)+*!&!61+5,)7+!&2!)+5'*&2)+:!)6/!&2!x!97A*2!,7!,-*!'):-,/!,-*!y"A&(1*!:7*2!1D;!N!61+5,)7+!)2!3*5'*&2)+:!)6/ &2!x!97A*2!,7!,-*!'):-,/!,-*!y"A&(1*!:7*2!370+;!N!61+5,)7+!)2!57+2,&+,!)6/!&2!x!97A*2!,7!,-*!'):-,/!,-*!y"A&(1* 37*2+`,!5-&+:*;

Summary of Trig Inverse Function

Subject: 
Rating: 
0
No votes yet

Trig Inverse Function Summary Function Meaning Domain Range Quadrants of Found on the (i.e., possible (i.e., possible the Unit Circle calculator by values for x) values for y) from Which Range Values Come j=sin!x y is the angle in the first or [-1, 1] [-nI2, n12] I and IV sin" (X) j=arcsin x fourth quadrant whose sine value is x j=cosir Y is the angle in the first or [-1, 1] [0, n] I and II cos-I(X) y=arccos x second quadrant whose cosine value is x j=tanix y is the angle in the first or (-00, (0) (-nl2, n12) I and IV tan" (X) y=arctanx fourth quadrant whose , tangent value is x

Trig formula sheet

Subject: 
Rating: 
0
No votes yet

All Rights Reserved: http://regentsprep.org Algebra 2 ? Things to Remember! Exponents: 0 1x ? 1m m x x ? ? ?m n m nx x x ?? ?( )n m n mx x? m m n n x x x ?? n n n x x y y ? ? ?? ?? ? ( ) ?n n nxy x y? Complex Numbers: 1 i? ? ; 0a i a a? ? ? 2 1i ? ? 14 2 1i i? ? ? divide exponent by 4, use remainder, solve. ( ) conjugate ( )a bi a bi? ? 2 2( )( )a bi a bi a b? ? ? ? 2 2a bi a b? ? ? absolute value=magnitude Logarithms log yby x x b? ? ? ln logex x? natural log e = 2.71828? 10log logx x? common log Change of base formula: log log logb a a b

Ch9 SG

Subject: 
Rating: 
0
No votes yet

372 CHAPTER 9 Mathematical Modeling with Differential Equations EXERCISE SET 9.1 1. y? = 2x2ex 3/3 = x2y and y(0) = 2 by inspection. 2. y? = x3 ? 2 sinx, y(0) = 3 by inspection. 3. (a) ?rst order; dy dx = c; (1 + x) dy dx = (1 + x)c = y (b) second order; y? = c1 cos t? c2 sin t, y?? + y = ?c1 sin t? c2 cos t+ (c1 sin t+ c2 cos t) = 0 4. (a) ?rst order; 2 dy dx + y = 2 ( ? c 2 e?x/2 + 1 ) + ce?x/2 + x? 3 = x? 1 (b) second order; y? = c1et ? c2e?t, y?? ? y = c1et + c2e?t ? ( c1et + c2e?t ) = 0 5. 1 y dy dx = x dy dx + y, dy dx (1? xy) = y2, dy dx = y2 1? xy 6. 2x+ y2 + 2xy dy dx = 0, by inspection. 7. (a) IF: ? = e3 ? dx = e3x, d dx [ ye3x ] = 0, ye3x = C, y = Ce?3x separation of variables: dy y = ?3dx, ln |y| = ?3x+ C1, y = ?e?3xeC1 = Ce?3x

Ch8 SG

Subject: 
Rating: 
0
No votes yet

317 CHAPTER 8 Principles of Integral Evaluation EXERCISE SET 8.1 1. u = 3? 2x, du = ?2dx, ? 1 2 ? u3 du = ?1 8 u4 + C = ?1 8 (3? 2x)4 + C 2. u = 4 + 9x, du = 9dx, 1 9 ? u1/2 du = 2 3 ? 9u 3/2 + C = 2 27 (4 + 9x)3/2 + C 3. u = x2, du = 2xdx, 1 2 ? sec2 u du = 1 2 tanu+ C = 1 2 tan(x2) + C 4. u = x2, du = 2xdx, 2 ? tanu du = ?2 ln | cosu |+ C = ?2 ln | cos(x2)|+ C 5. u = 2 + cos 3x, du = ?3 sin 3xdx, ? 1 3 ? du u = ?1 3 ln |u|+ C = ?1 3 ln(2 + cos 3x) + C 6. u = 3x 2 , du = 3 2 dx, 2 3 ? du 4 + 4u2 = 1 6 ? du 1 + u2 = 1 6 tan?1 u+ C = 1 6 tan?1(3x/2) + C 7. u = ex, du = exdx, ? sinhu du = coshu+ C = cosh ex + C 8. u = lnx, du = 1 x dx, ? secu tanu du = secu+ C = sec(lnx) + C 9. u = cotx, du = ? csc2 xdx, ? ? eu du = ?eu + C = ?ecot x + C

Pages

Subscribe to RSS - Mathematical analysis

Need Help?

We hope your visit has been a productive one. If you're having any problems, or would like to give some feedback, we'd love to hear from you.

For general help, questions, and suggestions, try our dedicated support forums.

If you need to contact the Course-Notes.Org web experience team, please use our contact form.

Need Notes?

While we strive to provide the most comprehensive notes for as many high school textbooks as possible, there are certainly going to be some that we miss. Drop us a note and let us know which textbooks you need. Be sure to include which edition of the textbook you are using! If we see enough demand, we'll do whatever we can to get those notes up on the site for you!